Archivo de la categoría: Extraterrestres

Las luces de los terremotos (y 2)

EN EL PAÍS DEL SOL NACIENTE

Japón es un sitio con gran actividad sísmica, y no es raro que una buena parte de los recursos económicos asignados a la investigación científica, se dediquen al estudio de los terremotos. El fenómeno en Japón es conocido desde la antigüedad. Un viejo haiku dice lo siguiente:

«La tierra le habla

suavemente a la montaña,

que tiembla

e ilumina el cielo».

El geólogo japonés Kinkiti Musya mencionó que la mayoría de los objetos vistos durante los temblores tienen las siguientes formas: haz, columnas, bolas de fuego, pelotas, embudos y trompetas. La mayoría de estos fenómenos se ven en el epicentro del temblor. Bajo la luz de estos fenómenos se pueden ver los árboles y las casas sin necesidad de otra fuente de luz. Se calcula que tienen aproximadamente 1 x 108 CP (Candle Power) y pueden llegar a iluminar una región a 100 kilómetros de distancia.

Musya clasificó las luces de los terremotos en:

1. Iluminación instantánea e indefinida

a. relámpagos

b. chispas de luz

c. bandas delgadas de luz

2. masas móviles luminosas bien definidas

a. bolas de fuego (centellas)

b. columnas de fuego verticales

c. haz de fuego (horizontal y oblicuo)

d. chimeneas luminosas

3. Flamas y emanaciones brillantes

a. flamas

b. llamas pequeñas

c. múltiples chispas

d. vapor luminoso

4. Fosforescencia de nubes y cielo

a. luz difusa en el cielo

b. nubes luminosas

Torahiko Terada, quien investigó profundamente estos fenómenos hizo la siguiente descripción de ellos:

«Características del fenómeno.

«1.- Color e intensidad de la luz.

«La mayoría de las veces se reporta un azul pálido similar al de los relámpagos. Sin embargo, hay testigos que informan que el color era rojo o naranja parecido al de las chispas.

«Causas probables del fenómeno.

«a) Fuegos distantes. Durante los temblores se producen algunos incendios que podrían confundir a observadores distantes.

«b) Relámpagos. Es poco probable que ocurran los dos fenómenos al mismo tiempo (Temblor y tormenta).

«c) Chispas eléctricas. Corto circuitos. Esto no podría explicar porqué la mayoría de los reportes localizan el fenómeno sobre el epicentro del temblor. Tampoco explica la duración del fenómeno, ya que un corto circuito tiene una vida media corta. Y finalmente no explica todos los reportes que se dieron antes de que se utilizara la electricidad.

«d) Triboluminiscencia producida por deslices de terreno. No podría explicar la enorme intensidad de la luz observada.

«e) Movimiento del agua en la corteza terrestre. En el Proceedings of Imperial Academy, Volumen VI, Número 10, páginas 401-404, de 1930, se demuestra que el movimiento del agua a través de capas subterráneas conteniendo una cadena de canales capilares pueden, bajo condiciones favorables, producir una enorme diferencia de potencial en la atmósfera superior y excitar una descarga eléctrica luminosa en la misma.

«De acuerdo con Wiedemann, Quincke, Helmholtz y sus estudios de química de superficies, una diferencia de potencial llamada Stromungs-potential se establece entre dos extremos de un tubo capilar por el cual fluye un líquido bajo un gradiente de presión.

«Galli dice que una explicación sencilla fundada en el vapor de agua puede dar la explicación a estos fenómenos: «Este vapor, saliendo con suficiente presión por una fisura puede dar origen a una manifestación eléctrica parecida a la que se obtiene en el laboratorio con la máquina de Armstrong»».

Ignacio Galli, el físico italiano al que hacía referencia Terada, tenía una impresionante colección de trabajos sobre este fenómeno y los relámpagos esféricos o centellas.

Uno de los eventos sísmicos que produjo mayor información, fue el sismo del 26 de noviembre de 1930 en la península de Edo (Izu). Musya recopiló más de 1500 testimonios. Envió 150 cuestionarios a las escuelas preparatorias y universidades pidiendo información sobre cualquier manifestación luminosa que se hubiese visto durante el terremoto. Al mismo tiempo, Terada reconstruyó el evento. Los fenómenos luminosos se observaron en un área vasta: 80 Km al Este, 110 Km al Nordeste y 70 Km al Oeste del epicentro. La distribución de los testimonios se correspondía a la distribución de la población y a la intensidad del sismo en esos lugares. De notable valor fueron los reportes de los guardas forestales de la torre de Sibaura (Tokio); la importancia fundamental estriba en que el fenómeno fue observado antes de la aparición del temblor (a las 4.03 de la mañana). El vigía de la torre notó, unos 6 segundos antes del temblor, una luz en dirección del Sur, que ascendió súbitamente al cielo al momento del sismo. Las observaciones restantes reportaron lámparas y fuegos de una duración increíblemente larga con respecto a las reportadas en otras ocasiones. Diversos testimonios reportaron la presencia de un cielo limpio y sin nubes (lo cual fue comprobado por la carta meteorológica consultada por Terada); al contrario de otros casos en los que se reportó algún banco de nubes. Sin embargo la vastedad de la zona que afecto el temblor puede permitir la coexistencia de varias condiciones meteorológicas. Se reportaron diversos casos de trabes y columnas luminosas observadas en distintos lugares. Algunos informaron de rayos luminosos emergiendo del suelo, tan intensos como los reflectores eléctricos. Se describieron algunas nubes luminosas, algunas de ellas tan brillantes como para permitir observar el más mínimo detalle de objetos a más de 250 metros de distancia.

El día anterior al terremoto, a las 4 p.m., varios pescadores de Siduura, observaron desde el mar un objeto luminoso esférico, que salió de la parte central del monte Wasidu, al oeste del monte Amago, y que se movió hacia el noroeste a gran velocidad.

Se vieron muchas bolas de fuego y nubes luminosas. También se vio una luz en forma de chimenea o parecida a una de las luces que actualmente se utilizan con motivos publicitarios. La mayor parte de los testigos vieron una luminosidad azul pálido o blanca, pero otros reportaron luces rojas y naranjas. Musya escribió al respecto:

«Las observaciones fueron tan abundantes y se hicieron tan cuidadosamente que no se pueden guardar dudas de la realidad del fenómeno y su conexión con el temblor. En la mayoría de ellos, el cielo brillaba como si fuera un relámpago en forma de hoja, y todos los observadores coinciden en afirmar que la duración de uno de esos destellos era mayor a la de los relámpagos normales. En un lugar localizado al Este de la bahía de Tokio, la luz parecía una banda auroral que divergía de un punto del horizonte. Se vieron en diferentes sitios haz y columnas de luz, varios observadores compararon dicho haz a los de un reflector. Otros describieron luces como bolas de fuego. Algunos declararon que las nubes se veían iluminadas o que un destello rojizo iluminaba el cielo. En Hakona-Mati, cerca del epicentro, y al Noroeste, se vio un flash de luz que aparecía un punto y luego en otro, y cuando el terremoto estaba en su clímax, al Suroeste apareció una columna de luz compacta, como si tuviera masa. De acuerdo con la mayoría de los observadores, el color de la luz era azul pálido o blanco, o como el del relámpago, pero otros vieron colores rojos y naranja. Se dijo que en Tokio la luz era tan brillante que los objetos en las habitaciones se podían ver fácilmente. En otro lugar, cerca de 50 kilómetros del epicentro, fue más brillante que la Luna llena»¦

«Las luces se vieron antes y después del terremoto, pero fueron más conspicuas durante el mismo. La dirección en que fueron vistas las luces, en general, apuntaban al epicentro, esto es, hacia la parte Norte de la península de Idu. Sin embargo también se vieron luces en otras direcciones, incluso en dirección del mar»¦

Durante el siguiente año Musya investigó otros fenómenos luminosos reportados en otros cuatro temblores. Los más numerosos fueron los del temblor del Sur de Hyga, en noviembre 2 de 1931. En este temblor se describieron las luces como un haz que salía de un punto en el horizonte, dándole al cielo nocturno una coloración azul.

Varios resplandores, de breve y mediana duración, se debieron a la ruptura de los cables eléctricos. Se dieron reportes en los que se informaba que los cortocircuitos produjeron tal intensidad de luz que se podía observar perfectamente el ambiente circundante. Algunos reportes se debieron, sin duda, a estas fallas eléctricas, pero otros, los que ocurrieron en zonas en donde no había electricidad no tienen esta explicación. La abundante casuística recopilada por Musya y Terada les llevó a concluir que, el proceso físico involucrado, era la triboluminiscencia. Esta teoría fue sometida a pruebas de laboratorio en las que se uso un aparato constituido por un disco metálico, de 5 mm de espesor, al que se le hacía girar rápidamente, mediante un motor eléctrico que trituraba diferentes tipos de rocas colocadas en su interior. Este instrumento simple y rudimentario produjo emisiones de luces en la superficie de contacto entre el disco y las rocas, confirmando la tesis de los investigadores.

Terada T., Hirata M. y Utigusaki T., del Instituto de Investigaciones Físico Químicas del Japón realizaron experimentos de triboluminiscencia para tratar de probar que éste es el origen de los fenómenos luminosos vistos durante los temblores.

Cuando se comprimen los cristales de ciertas sustancias (el azúcar, por ejemplo), se hacen visibles chispas y otros fenómenos luminiscentes. Íntimamente relacionado a esto está la luminiscencia azul tenue que se observa cuando se desenrolla una cinta adhesiva, y la luminiscencia exhibida cuando el bromato de estroncio, y algunas otras sales, se cristalizan en soluciones calientes. En todos estos casos se producen cargas positivas y negativas, por la separación mecánica de las superficies y durante el proceso de cristalización. La emisión de luz ocurre por descarga, tanto directamente por fragmentos moleculares, o vía excitación de la atmósfera en la vecindad de las superficies separadas: el resplandor azul proveniente de las cintas adhesivas es emitido por el N2 del aire que ha sido excitado por las descargas eléctricas.

Los movimientos de tierra producen tensiones en las rocas cristalinas por las cuales el efecto piezoeléctrico genera campos eléctricos de varios miles de volts por metro. Estos campos electromagnéticos se concentran en las áreas de más susceptibilidad, como lo son las líneas de falla. Teóricamente estos campos pueden crear la ionización de un bajo nivel de las moléculas de aire adyacentes a la columna eléctrica que se proyecta a través del terreno.

Otro proceso que podía dar cuenta de la fuerte intensidad del campo eléctrico es el flujo del agua a través de los microscópicos capilares de las rocas, debida a la presión de las ondas sísmicas. Este proceso produce destellos luminosos similares a los relámpagos.

UN FORTEANO CIENTÍFICO

William R. Corliss es la nueva imagen del forteanismo. A diferencia de su antecesor (Fort), Corliss tiene una excelente preparación académica y su estilo no es tan obtuso como el de «la foca del Bronx». Se licenció en física, en 1950, en el Rensselaer Polytechnic Institute, y obtuvo una maestría en ciencias físicas por la Universidad de Colorado, en 1953. Trabajó en la industria espacial desarrollando proyectos de motores de propulsión. Luego se dedicó a escribir temas de divulgación científica que iban de la tecnología espacial, la astronomía, a la geofísica. Escribió para la Nacional Science Foundation, La National Aeronautics and Space Administration y la Energy Research and Development Administration. Pero no fue sino hasta 1974 que encontró su verdadera vocación. Fundó su Soucerbook Project, dedicado a recopilar notas aparecidas en la literatura científica de todo el mundo, en donde se da cuenta de anomalías en los campos de la astronomía, geología, biología, geofísica y arqueología.

En el campo de las luces de los terremotos, Corliss tiene un extenso abanico que mostrar. El siguiente es sólo un ejemplo aparecido en el Scientific American:

«El Dr. Walter Knoche, el director alemán del Servicio Meteorológico Chileno, inició una investigación del curioso fenómeno llamado «relámpago de calor» que frecuentemente se observa a lo largo de las cumbres de los Andes, y ocasionalmente es visible desde mar adentro. (En un caso el Dr. Knoche lo vio desde la Isla de Pascua, a 540 Km de las costas chilenas).

«Las tormentas con relámpagos son raras en Chile, y este hecho puede explicarse por la suposición de que los Andes actúan como gigantescos pararrayos, entre los cuales ocurren, a gran escala, descargas silentes desde las nubes. Las descargas visibles ocurren durante la estación cálida, desde finales de la primavera hasta el otoño, y parecen concentrarse sobre ciertos puntos. De acuerdo con el Dr. Knoche parecen estar confinadas a cierta región de los Andes, la Cordillera Real, en la costa. Vistas desde un punto favorable y cercano a su origen, se puede observar, a veces, un destello constante alrededor de las cumbres de las montañas, con arranques ocasionales, que frecuentemente simulan un haz de luz parecido a los reflectores, que se dirigen hacia el Oeste y se extienden sobre el océano. El color de la luz es amarillo pálido, y raramente rojizo.

«Un hecho sorprendente de estas descargas es que se amplifican durante los terremotos. En el momento del gran terremoto de agosto de 1906, a través del centro de Chile, el cielo entero parecía estar en llamas; nunca antes ni después había estado tan brillante. Los nativos consideran estas luces como reflexiones en el cielo de la lava en los cráteres de los volcanes; pero parece no haber duda de que se trata de descargas eléctricas.

«Se ha planeado hacer mediciones espectroscópicas de este fenómeno singular, y también, si es posible, medir el campo eléctrico de la atmósfera en los altos Andes donde parecen tener su origen. Posiblemente el resultado pueda conectar los «Relámpagos de los Andes» con una forma peculiar de aurora que ha sido observada por Lemstrom sobre las cumbres de las montañas».

OVNIS Y LUCES TELÚRICAS

Al iniciar el siglo pasado, Charles Hoy Fort reportó que meteoros «extraños» aparecían durante los terremotos. Pero no fue sino hasta 1960 que el ufólogo americano John A. Keel, que se asoció la aparición de esas luces con las líneas de falla magnéticas y con la presencia de los terremotos. En 1967 el escritor americano Vincent H. Gaddis se ocupó del tema y escribió el primer libro dedicado por entero a las luces misteriosas: Mysterious fires and lights. El libro es sensacional, y mucho de ello se debe a las excelentes dotes de escritor de Gaddis, un asiduo colaborador de la revista Fate. Este escritor es, también, el primero que se ocupo y bautizó al famoso Triángulo de las Bermudas, y el mismo que difundió varios casos de «desapariciones misteriosas» como el de David Lang u Oliver Larch (casos espurios de los que nos ocupamos en otro lugar). El libro que nos ocupa va de la presentación de casos de foo fighters a los critters (los OVNIs como organismos vivientes), centellas, anomalías en la recepción de radar, fuegos fatuos, fuegos de San Elmo, centellas y otros fenómenos relacionados. Su habilidad con la pluma no le exime de haber generado mucho de los mitos actuales de los cultores de los fenómenos paranormales.

Pasó tan solo un año, y poco antes de aquel famoso mayo francés del 68, y sin conocer la obra de Gaddis, (aunque la de Keel, probablemente, fue el disparador para dar una vuelta de giro a la fallida hipótesis de Aime Michel y las ortotenias, y presentarla bajo un sustento geofísico), el ufólogo francés Ferdinand Lagarde, tras un análisis concienzudo de 86 casos de presuntos aterrizajes de OVNIs en territorio francés, durante la oleada de 1954, determinó que el 37% de ellos se situaban sobre fallas geológicas. Con esos datos trató de demostrar una relación entre los avistamientos de OVNI y las fallas geológicas. Según él había una correlación notable entre los aterrizajes OVNI y la vecindad de fallas geológicas. Su hipótesis fue que los fenómenos piezoeléctricos generaban fenómenos electromagnéticos.

El ingeniero español Félix Ares de Blas halló una correlación parecida entre OVNIs y zonas geomagnéticas. Un trabajo similar fue el que realizó el capitán Tomás Ramírez y Barbero, de Zamora, y posteriormente, David G. López y Félix Ares de Blas publicaron un artículo en donde apuntaban:

«Queremos mencionar aquí la circunstancia, ya apuntada por algunos investigadores, de que el número de observaciones OVNI se incrementa en las horas anteriores y posteriores a los movimientos sísmicos. En España tuvimos ocasión de comprobarlo, aunque de forma no demasiado significativa, con motivo del sismo del 28 de febrero de 1969, que afectó primordialmente a la zona sur de la Península».

Sus resultados encontraron eco en

«»¦ la Embajada de Japón, mediante la publicación de una noticia donde se decía que científicos de aquel país han comprobado que durante las horas anteriores a cualquier movimiento sísmico, se han detectado alteraciones en el campo magnético de la zona».

Tomás Ramírez y Barberó encontró que el 34.4% de las observaciones de OVNIs se producen sobre líneas de falla. Más tarde, la mancuerna Ares-López obtuvo un coeficiente de correlación de Pearson de -0.069 para el total de sismos versus OVNIs, comprendidos entre los años 1950 y 1977 (inclusive). Estos autores anotan:

«Los resultados obtenidos en este capítulo parecen estar en contradicción. Por un lado se demuestra la inexistencia de correlación entre las distribuciones que a lo largo del tiempo han seguido las observaciones OVNI y la actividad sísmica. Por otro, en cambio, existen leves indicios de que las líneas de falla y zonas de mayor intensidad sísmica son las que detectan un porcentaje de casuística OVNI superior al esperable por azar.

«No obstante, el científico soviético Iván Zayanchkovski, en un artículo publicado recientemente por la revista Sputnik, escribe el siguiente párrafo:

«Â«Se ha descubierto que durante los temblores de tierra aumentan las corrientes eléctricas, que surgen de las entrañas de la tierra a causa de la deformación de las rocas. Con la descarga de poderosos campos eléctricos, corrientes de electrones se precipitan desde las profundidades del subsuelo hasta la atmósfera; en el cielo aparecen luminiscencias y resplandores. Así sucedió en la madrugada del 26 de abril de 1966 en Tashkent: varios segundos antes de la sacudida se pudo observar un gran resplandor sobre la ciudad.

«Â«Por consiguiente, al observar los cambios de concentración de electrones en la atmósfera se pueden predecir los terremotos unas horas antes de producirse»».

Efectivamente, los servicios sismológicos soviéticos declararon, según la Revue France-URSS, No. 60:

«Algunos instantes antes del terremoto que sufrió tan dolorosamente Tashkent en 1966, el cielo se iluminó como si ardiera por encima de la ciudad.

«Esta visión de Apocalipsis ha sido explicada: las deformaciones que sufren las rocas son acompañadas de emisiones de electrones que recalientan las capas subterráneas, aceleran su ruptura y llega a la atmósfera provocando esa iluminación».

Ignacio Darnaude, en un estudio de la casuística andaluza, señala la observación de objetos no identificados en diversas localidades, coincidiendo con el terremoto de intensidad IX registrado en la noche del 28 de febrero de 1969.

Parece ser que en 1975, Andrew Cork y Paul Devereux publicaron las investigaciones que habían hecho en Leicestershire, relacionando múltiples anomalías meteorológicas con la aparición de OVNIs. No he tenido acceso a ese trabajo.

Un año antes, William R. Corliss fundó su Sourcebook Project y en 1976 publicaría su primer libro y al año siguiente iniciaría su Science Frontiers. En varias de estas obras menciona fenómenos luminosos naturales, que podrían ser confundidos con OVNIs.

Hilary Evans publicó, en julio de 1982 en su revista de ufología The Probe Report, un largo artículo en el que proponía una nueva etiqueta para la serie de fenómenos que estamos estudiando: BOL (Balls of Lights). Decía que eran entidades naturales e inteligentes «proteiformes» (con la propiedad de cambiar de forma) que en general no siempre viven en el aire y que son originarios de nuestra atmósfera. Se les describe como bolas de luz. Para Evans eran la «verdadera llave del enigma de los OVNIs», y por ello animó el «Project Bolide», en donde la palabra era en realidad el acrónimo «Ball of Light Internacional Data Exchange», un grupo informal de apasionados que se dedicó a recopilar bibliografía de procedencia dispersa y de difícil acceso. La coordinación del grupo estuvo a cargo del ufólogo del BUFORA Robert Moore

Henk Hinfellar, de Nueva Zelanda; Paul Norman, de Melbourne (Australia) y Stan Seers, director del Departamento de Investigaciones de OVNIs en Brisbane (Australia), basándose en observaciones de OVNIs y en ortotenias, llegaron a determinar la correspondencia de estos avistamientos con las líneas de fractura, o sea, las zonas ubicadas en los cinturones de fuego que bordean la costa Oeste de América, la costa Este de África, el Mediterráneo, el Norte de la India y la costa e islas del Japón y de Oceanía, que forman el famoso cinturón de fuego del Pacífico. Sus resultados fueron expuestos en un capítulo de UFOs around the World.

Las luces de los terremotos han sido reportadas con tanta frecuencia que el doctor John S. Derr, del Servicio Geológico de los Estados Unidos (US Geological Survey), ha dicho que su existencia no puede seguir siendo ignorada. Derr ha investigado la posible correlación entre los fenómenos luminosos vistos en la reservación india de Yakima, Washington y las líneas de falla. En los años setenta hubo una oleada de avistamientos OVNI en la reservación, bajo la forma de luz ígnea, efectos de resplandor y destellos y curiosas nubes luminiscentes. También eran frecuentes los ruidos sordos bajo tierra. Las luces fueron bien observadas por los testigos, y también se tomaron fotografías. Los fenómenos tendían a congregarse alrededor de Toppenish Ridge, cordillera de múltiples fallas que cruza serpenteando la reservación. Curiosamente, la reservación se encuentra en el flanco oriental de las montañas Cascada, cerca de donde Kenneth Arnold vio sus famosos platillos voladores en 1947.

Cuenta una leyenda de los indios Yakima que hace mucho tiempo, cuando murió un chaman o médico brujo que tenía los ojos rojos, un objeto del cielo bajó a la tierra y se llevó los restos del brujo. Esos objetos luminosos se continúan viendo hasta nuestros días en la reservación de más de medio millón de hectáreas.

Muchos de los informes modernos provienen de vigías forestales contra incendio. Sus reportes hacen referencia a luces nocturnas rojo anaranjadas o blancas, que se comportan de modo errático. Joseph Allen Hynek recabó fondos para poner al ingeniero David Akers al mando de un proyecto de investigación. Haciendo uso de cámaras de foto fija, una de ellas con una rejilla para analizar la longitud de onda de la luz, y otras de cine, Akers se preparó a partir hacia Yakima. Contaba, además con un magnetómetro, contador Geiger y aparatos para medir radiaciones infrarrojas y ultrasonidos. Su expedición comenzó el 19 de agosto de 1972 y duró dos semanas. Durante ese tiempo logró tomar varias fotografías pero no se pudo llegar a conclusión alguna.

Desde comienzos de 1950, la Oficina Nacional de Información Geográfica ha confeccionado mapas de todas las zonas de fallas magnéticas de los Estados Unidos. Según el ufólogo Eric Norman, existe una importante concentración de informes sobre OVNIs en aquellas áreas.

Otra región que estudiaron Derr y Persinger fue Uintah Basin, en el Nordeste de Utah. También esta zona experimentó una oleada OVNI en los años setenta. Una vez más se vieron bolas, huevos de luz y globos que parecían tener un lustre metálico. Los investigadores encontraron indicios convincentes de la veracidad de la hipótesis relativa a la tensión tectónica.

Ya el mismo doctor Edward U. Condon había encargado al físico Martin D. Altschuler que investigara una posible relación entre estas luces y el fenómeno OVNI. Sus resultados aparecen en la Sección 12 y 13 del Informe Condon. Altschuler escribió:

«La mañana del 14 de noviembre de 1963 comenzaron las erupciones volcánicas a unos 23 kilómetros de las costas de Islandia, en donde la profundidad del mar es de 130 metros. En tan sólo 10 días de creo una isla de 1 kilómetro de longitud y de 100 metros sobre el nivel del mar. Había nacido la isla de Surtsey.

«Las películas del fenómeno muestran nubes que se elevan verticalmente a una velocidad de 12 m/seg hasta una altura de 9 Km. Las nubes que se grabaron el 1 de diciembre mostraban luces intensas y continuas, presumiblemente debidas a la fricción entre las partículas de polvo y a los efectos eléctricos del azufre.

«Las mediciones del campo eléctrico que se hicieron desde aviones mostraban valores superiores a los 11,000 volt/m».

Algunos de estos fenómenos luminosos eran parecidos a los mostrados en el Popocatépetl en sus días de mayor actividad, y que fueron presentados como OVNIs por el ufólogo de la televisión de todos conocido.

Ilustración de principios del siglo pasado que muestra el curioso fenómeno de «Las luces de los Andes».

La «foca del Bronx», Charles Hoy Fort, frente al inmenso tablero de damas de su invención.

John A Keel fue el primer ufólogo que relacionó las luces telúricas con los OVNIs.

Vincent Gaddis.

El primer libro de OVNIs que trató el tema de las luces telúricas: Mysterious fires and lights, de Vincent Gaddis.

William R. Corliss.

El primer libro de William R Corliss sobre curiosidades y anomalías naturales.

Aime Michel sería la inspiración para Ferdinad Lagarde, quien relacionó a los Misteriosos Objetos Celestes con las líneas de falla: las nuevas ortotenias.

Los cuatro ufólogos españoles que se interesaron en las luces telúricas, de izquierda a derecha: José Tomás Ramírez y Barberó, Ignacio Darnaude Rojas Marcos, David G. López y Félix Ares de Blas.

Paul Devereux es uno de los principales adalides de la hipótesis de las luces terrenas.

Uno de los investigadores de fenómenos forteanos más activo en nuestros días, el ingles Hilary Evans, fundador del Project Bolide.

Toppenish Ridge, a la izquierda, en la reservación india de Yakima, lugar de múltiples avistamientos OVNI en la década de los setenta. A la derecha, una de las fotos obtenidas por Ackers.

Más ejemplos de las luces de Yakima.

Arnold y sus nueve discos. ¿Fueron los platillos volantes de Arnold originados por luces sísmicas? Lo más probable es que no y que sólo exista una curiosa coincidencia entre ese avistamiento y el hecho de que esa región sea una zona de alta incidencia de luces sísmicas, debido a que se encuentra en una falla tectónica.

El ingeniero David Ackers realizó estudios en campo de las luces en la reservación de Yakima, apoyado económicamente por el doctor Hynek

Edward Condon ya pensaba, en la década de los sesenta, gracias a las investigaciones del doctor Martin D. Altschuler, que muchos de los reportes sobre supuestos OVNIs correspondían a luces telúricas o de origen natural. Continuará…

Vea también los siguientes enlaces
https://marcianitosverdes.haaan.com/2006/05/las-luces-de-los-terremotos-primera-parte/
https://marcianitosverdes.haaan.com/2006/05/las-luces-de-los-terremotos-y-2/
https://marcianitosverdes.haaan.com/2006/05/las-luces-de-los-terremotos-y-3/
https://marcianitosverdes.haaan.com/2006/05/las-luces-de-los-terremotos-y-4/
https://marcianitosverdes.haaan.com/2006/06/las-luces-de-los-terremotos-final/
https://marcianitosverdes.haaan.com/2007/05/luces-de-los-terremotos/
https://marcianitosverdes.haaan.com/2007/08/luces-de-los-terremotos-en-per/
https://marcianitosverdes.haaan.com/2007/08/el-terremoto-de-per-y-las-luces-ssmicas/
https://marcianitosverdes.haaan.com/2007/08/otro-video-de-las-luces-de-los-terremotos-en-per/
https://marcianitosverdes.haaan.com/2007/08/transformadores-o-luces-de-los-terremotos/
https://marcianitosverdes.haaan.com/2007/08/luces-rojas-en-el-terremoto-de-per/
https://marcianitosverdes.haaan.com/2007/08/luces-elctricas-en-el-terremoto-de-per/

¡Un pato atrapa, y se come, al ET que hace los cropcircles!

¿El pato de Fairfield se tragó un extraterrestre?

CORDELIA -Una radiografía del estómago de un pato herido, que murió en el Centro de Investigación Internacional de Rescate de Aves en Cordelia, contiene la curiosa imagen de la cara de un extraterrestre, dijeron los investigadores el jueves.

Y como el sándwich de la virgen, la imagen de la radiografía será subastada en eBay. La puja comienza el domingo a las 3 P.M.

«Los ingresos por la venta de esta radiografía unica irán ha financiar nuestros esfuerzos para continuar el rescate y rehabilitación de las aves y pájaros acuáticos heridos o huérfanos», dijo Jay Holcomb, director del centro.

El pato adulto macho fue traído al centro de Cordelia, por lo que parecía ser un ala quebrada, desde otro centro en el área de la bahía, el domingo.

La asistente Marie Travers radiografió al pato y se sorprendió al ver que parecía ser la cara o la cabeza de un extraterrestre en el estómago del pájaro.

El pájaro murió rápidamente, silenciosa y pacíficamente después de que las radiografías fueran tomadas, dijo el portavoz del centro Karen Benzel.

El personal en el centro se preguntaba, regocijándose, si el extraterrestre en el pato intentaba comunicarse con la gente de la tierra, ya que el centro está situado cerca de un área donde fueron encontrados cropcircles hace algunos años.

Benzel observó que la simetría de la cara del extraterrestre es perfecta y tiene una mueca intensa como si estuviera angustiado después de haber sido comido. Benzel se preguntaba si el pato había consumido un extraterrestre joven.

«Inmediatamente supimos que esto era algo que nunca habíamos visto antes en nuestros 35 años de vida», dijo Benzel.

http://www.foxreno.com/news/9273530/detail.html

Centellas (y 3)

ANTIMATERIA

Ashby y Whitehead propusieron que las centellas eran producidas por la aniquilación de diminutos fragmentos de meteoritos de antimateria. Esto ayudaría a explicar las asombrosas propiedades de las centellas de entrar por las ventanas cerradas. Pero esta hipótesis supone que la antimateria puede ser relativamente estable en presencia de la materia.

Los autores calculan que una partícula de antimateria de 5 metros de radio y de unos 5 x 10-10 gramos podría producir unos 105 Joules al aniquilarse.

En base a los cálculos de Nauenberg y Ruderman de la curva de energía potencial para la reacción e hidrógeno y el antihidrógeno, se puede apreciar que existe una barrera de potencial repulsiva de unos 0.5 eV. En otras palabras, si una partícula de antimateria tiene una velocidad relativa a su medio ambiente lo suficientemente baja para que cuando choque con las moléculas del aire no alcance la barrera de potencial, no se aniquilará.

CENTELLAS A PARTIR DE AGUA

Otra teoría propuesta por A. Koldamasov (119) sugiere que el flujo de agua a grandes velocidades a través de boquillas puede producir descargas fulgurantes. En un experimento, una expansión abrupta produjo una cavitación pulsante. El flujo funcionaba como un separador de carga en el líquido y la ionización en la pared de la cámara se obtenía por un proceso secundario. La recombinación de los electrones en la pared producía un fulgor continuo con un color que dependía del dieléctrico de la pared: el cemento o el asbesto producían un color rosa, el plexiglás, un amarillo, y la ebonita un azul.

En los experimentos de F. W. Crew (120) las gotas que se encontraban entre la presión del canal del relámpago y una presión reducida compensadora que la rodeaba, producían una infinidad de gotitas. La presión de radiación de la descarga repelía tales gotitas y si existía una onda sónica, las gotitas se fragmentaban aún más. Como resultado de esto se producía una separación de cargas.

Las pequeñas gotitas negativamente cargadas eran impulsadas por el canal del relámpago, produciendo una envoltura que rodeaba a un núcleo positivo. Al recombinarse las cargas producían un destello extraordinario.

VORTICES

Según E. R. Wooding (121) se puede producir un anillo en vórtice al aplicar un impulso asimétrico a un fluido. Algunas veces se forman anillos de humo al detonar un explosivo sobre una superficie lisa. Las centellas se pueden producir de igual manera, es decir, son plasmas producidos por un proceso similar a la ablación de una superficie sólida por un pulso láser de alta potencia. Para Wooding (122) la vida media de este anillo se controla por perdida de energía térmica y disipación de campo magnético. Si la temperatura del plasma es de 104 °C, la difusividad magnética Dm es del orden de 10-5 cm2/seg y el tiempo para que el campo se difunda fuera del anillo r2/Dm es mayor a 105 segundos.

CAMPOS DE ALTA FRECUENCIA

Fue un mexicano, el profesor Cerrillo (123) el primero en postular la teoría del campo de alta frecuencia, en 1943. Posteriormente, en 1955, el físico soviético y premio Nóbel Pjotr L. Kapitza (124) elaboró la idea.

La idea de Cerrillo-Kapitza es la siguiente:

En las tormentas y cuando se producen relámpagos, el medio ambiente está altamente electrificado y de alguna manera se pueden generar ondas electromagnéticas y efectos de interferencia producidos por reflexión de estas ondas en el suelo o en otras superficies conductoras. Esto puede producir, bajo ciertas condiciones, ondas estacionarias. Estas ondas surgen en el lugar de reunión de dos o más frentes de onda de la misma frecuencia que viajan en diferentes direcciones. La región donde las ondas se refuerzan se llama antitodo, y donde estas se cancelan se denomina nodo. En el antitodo la intensidad del campo es mayor por lo que pueden resonar pequeñas cantidades de gas ionizado, absorbiendo energía del campo, produciendo una ionización en cascada y la formación de una centella. Las ondas reforzadas en el antitodo tienen la energía suficiente para ionizar los átomos de aire. Un gas ionizado puede absorber ondas electromagnéticas de una frecuencia apropiada provocando el fenómeno llamado de Resonancia. Esto puede producir una ionización en cascada dando como resultado la formación de una bola de luz. El tamaño de estas esferas está directamente relacionado con la frecuencia de radiación electromagnética.

La frecuencia del campo debe ser tal que el diámetro de la esfera sea aproximadamente un cuarto de la longitud de onda (0.274λ = d). Es decir, para un diámetro de equilibrio de unos 20 centímetros, la frecuencia debe ser de 400 MHz, correspondiente a una longitud de onda de aproximadamente un metro. Resulta difícil explicar por qué no se reciben interferencias en la banda de radiocomunicaciones de los aviones, que se encuentra en este rango.

El singular comportamiento de las centellas, que algunas veces entran por puertas, chimeneas o ventanas, se puede explicar fácilmente con esta teoría, ya que estos lugares funcionan como guías de onda.

Las centellas formadas en un antitodo se moverían hacia el nodo en donde podrían permanecer estáticas. Si se desvían un poco del nodo, la radiación a ambos lados las puede atraer y llevar a otro nodo. Esto explica los movimientos caprichosos que se han reportado.

Esquemáticamente esta teoría se puede ver en la figura 2.

Existen, empero, varios problemas con esta teoría. No puede explicar la existencia de las centellas en la interfase aire-agua (recordemos el informe del Daily Mail), ya que la teoría se basa en un abastecimiento externo de energía, el cual se vería abruptamente cortado al entrar la centella al agua. Además, no existe evidencia de que una tormenta pueda generar las cantidades requeridas de emisión de UHF.

POLVO CARGADO

Edward L. Hill (124), de la Universidad de Minnesota (Lightning and Trasients Research Institute) ha ofrecido otra explicación. Sugiere que el destello de luz que precede a las centellas induce una separación de cargas positivas y negativas en nubes, polvo y otros objetos minúsculos que se encuentran en el aire. De esta forma las cargas no viajan libremente, sino que quedan «incrustadas» dentro del polvo o las gotas de agua. Esto hace que no se recombinen tan fácilmente como en un plasma.

Los cúmulos separados de cargas positivas y negativas no interactúan entre sí. El movimiento turbulento del aire crea una situación en la cual la fuerza del campo eléctrico excede la mínima necesaria para producir una descarga eléctrica (luz). Miles de estas pequeñas descargas producen la ilusión de una bola de luz.

Esta teoría se ve esquematizada en la figura 3.

El problema con la teoría de Hill es que no explica cómo se separan las cargas inicialmente.

CORRIENTE DIRECTA

Varios autores han propuesto otra teoría: una corriente constante que fluye de las nubes a la Tierra puede entrar en secciones transversales en una región de alta conductividad (la esfera) y el incremento de energía consumida puede mantener la esfera. Este tipo de teoría tiene problemas obvios al no poder explicar aquellos eventos que ocurren dentro de estructuras conductoras como los aviones.

La siguiente figura muestra un esquema de esta teoría.

CENTELLAS FABRICADAS EN EL LABORATORIO

Se han hecho varios intentos de producir centellas en el laboratorio. Manwaring (125) logró producir bolas de luz en el seno del aire libre en 1965 usando una radiofrecuencia de 75 MHz. La esfera de luz duraba aproximadamente medio segundo.

Powell, del Brookhaven National Laboratory, usó una fuente de 30 KW con una frecuencia de 75 MHz y produjo esferas luminosas en el interior de un cilindro de vidrio de unos 15 centímetros de diámetro interno. La vida media de la esfera era de 0.5 a 1 segundos.

Los experimentos de Powell se efectuaron a presión constante entre 0.5 y 3 atmósferas. Por debajo de 0.5 atmósferas desaparece rápidamente la descarga. La composición del gas fue una mezcla de nitrógeno en aire (utilizando varias proporciones de O2/N2) con O2 y N2O. A una mayor concentración de N2 la luminosidad era azul poco intenso, mientras que a mayor concentración de O2 la luminosidad es blanca y muy intensa. Con N2O las esferas alcanzaban un diámetro de 50 centímetros y eran anaranjadas con una vida media de 2 segundos. Se cree que la energía química de la descomposición del N2O (1 eV por molécula) es probablemente la responsable de una mayor emisión de luz.

Se utilizaron varios tipos de electrodos: Pt, Au, Cu, Zn, Cd, C, Sn, W y Al. La temperatura de las esferas fue de aproximadamente 2,000 -2,5000 °K.

Los laboratorios de investigación de la Bendix han logrado crear pequeñas regiones de plasma enfocando microondas en un volumen pequeño. Sin embargo, estas bolas de luz no se mueven como las centellas.

La Radio Frequency Company Incorporated de Medfield, Massachussets tiene un programa para la formación de centellas en el laboratorio. Dentro de una caja de aluminio se hacen incidir ondas electromagnéticas a una frecuencia resonante. Se han obtenido centellas de unos 35 centímetros de diámetro, que desaparecen cuando se deja de irradiar energía.

Todas las características de las centellas de las cuales hemos hablado en estas líneas las hacen un fuerte candidato para explicar varios reportes de OVNIs, como aquellos en los que los aviones son perseguidos por «bolas de luz». Los aviones forman a menudo fuertes cargas netas debido al contacto con la nieve, lluvia o partículas de polvo y estas cargas pueden atraer a las centellas.

Un mejor estudio y comprensión en el campo de las centellas nos puede dar mucha luz en la desmitificación del fenómeno OVNI.

REFERENCIAS.

(1) Singer Stanley, Ball Lightning, capítulo 12 de Lightning, R. H. Golde (editor), Vol I, pág. 409, Academic Press, 1977.

(2) Brand W., Der kugelblitz, Probleme der kosmichen physik, II/III, Henri Grand, Hamburg, 1923.

(3) Norinder H., Om blixtens natur, Kungliga ventenskapssocietetens Arsbok, 94, pág. 39, 1939.

(4) McNally J. R. Jr., Paper J-14, Amer. Phys. Soc., Div. Plasma Physics Meeting, Gottlinburg, Tennes., nov 2-5, 1960, Ball lightning. A survey, Bull. Amer. Phys. Soc., 6, pág. 202, abstr. J-14, 1961.

(5) Rayle W. D., Ball lightning characteristics, National Aeronautical and Space Administration, Washington, D. C., Tech. Note NASA TN D-3188, enero de 1966.

(6) Hobana Ion & Wevebergh Julien, Platillos volantes tras la cortina de hierro, Javier Vergara, Colección Lo inexplicable, Buenos Aires, 1978.

(7) Barry Dale James, Ball lightning, J. Atmos. Terres. Phys., 29, pág. 1095, 1967.

(8) Mathias E., Sur les foudres globulaires bleues, C. R. Hebd. Séances Acad. Sci., 199, pág. 505, 1934.

(9) Mathias E., La notion d»™impureté dans les foudres globulaires bleues, C. R. Hebd. Séances Acad. Sci., 199, pág. 1083, 1934.

(10) Mathias E., Au sujet des foudres bleues, Ciel et Terre, 50, pág. 300, 1934.

(11) Barry Dale James, Laboratory ball lightning, J. Atmos. Terres. Phys., 30, pág. 313, 1968.

(12) Powell J. R. & Finkelstein D., Structure of ball lightning, en Advances in Geophysics, H. E. Landsberg & J. van Mieghem (editors), Academic Press, 13, pág. 141, New York, 1969.

(13) Silberg A. Paul, On the question of ball lightning, J. Appl. Phys., 32, pág. 30, 1961.

(14) Brown G. H., Ball lightning, Meteorol. Mag., 86, pág. 375, a957.

(15) Browne T., Account of a thunderstorm on June 28, 1665, en The miscellaneous writings of sir Thomas Browne, Farer and Faber Ltd., London, pág. 195, 1904.

(16) Silberg. A. P., Op cit.

(17) Leonov R. A., The enigma of ball lightning, informe en Zagadka Sharovoy Molnii, Movskva, IZD-VO, Nauka, 1965, traducido en Foreing Science Bull., 2, (5), pág. 47. 1966.

(18) Dmitriev M. T., Priroda sharovoi molnii, Priroda, 56, (6) pág. 98, 1967.

(19) Dmitriev M. T., Zh. Tekhn. Fiz., 39, (2), pág. 387, 1969.

(20) Dmitriev M. T., Stability mechanism for ball lightning, Soviet Phys. Tech. Phys., 14 (2), pág. 284, 1969.

(21) Jans C. de, Coup d»™oeil rétrospectif sur les essayés d»™explication de la foudre globulaire, Ciel et Terre, 31, pág. 499, 1910.

(22) Jans C. de, Coup d»™oeil rétrospectif sur les essayés d»™explication de la foudre globulaire, Ciel et Terre, 32, pág. 155, 1911.

(23) Jans C. de, Coup d»™oeil rétrospectif sur les essayés d»™explication de la foudre globulaire, Ciel et Terre, 32, pág. 255, 1911.

(24) Jans C. de, Coup d»™oeil rétrospectif sur les essayés d»™explication de la foudre globulaire, Ciel et Terre, 32, pág. 301, 1911.

(25) Jans C. de, Coup d»™oeil rétrospectif sur les essayés d»™explication de la foudre globulaire, Ciel et Terre, 33, pág. 18, 1912.

(26) Jans C. de, Coup d»™oeil rétrospectif sur les essayés d»™explication de la foudre globulaire, Ciel et Terre, 33, pág. 143, 1912.

(27) Kohl T., Gaea, 18, pág. 569, 1882.

(28) Winchester G., A particular lightning phenomenon, Science, 70, pág. 501, 1929.

(29) Kogan-Beletskii G. I., The nature of ball lightning, D. J. Ritchie (editor), Consultants Bureau, New York, 1961.

(30) Davidov B. V., Redkaia fotografica sharovi molnii, Priroda, 47, (1), pág. 96, 1958.

(31) Altschuler M. D., House L. L., & Hildner E., Is ball lightning a nuclear phenomenon?, Nature, 228, pág. 545, 1970.

(32) Hill E. R, & Sowby F. D., Radiation from ball lightning, Nature, 228, pág. 1007, 1970.

(33) Blair A. J. F., Magnetic fields, ball lightning and campanology, Nature, 243, pág. 512, 1973.

(34) Morris W., A thunderstorm mystery, London Daily Mail, 5 de noviembre de 1936.

(35) Goodlet G. L., Lightning, Inst. Electr. Engr. J., 81, pág. 1, 1937.

(36) Golka R. K., & Bass R. W., Tesla ball lightning theory, a BGK-wave solution-pair LangmuirBebye sheath surface-tension hypothesis. The Farnsworth effect, and «hydroton» electrostatic-internal self-contained plasmoid concept, Annual Controlled fusion theory conference, Paper J3, San Diego, Ca., mayo 4-6, 1977.

(37) Mathias E., Contribution a l»™étude de la matière fulminante : L»™énergie par centimètre cube et par gramme au moment de l»™explosion, C. R. Hebd. Séances Acad. Sci., 182, pág. 194, 1926.

(38) Shapiro M. L., Shedding light on UFO»™s, Optical Spectra, 13, (4), pág. 13, 1979.

(39) Tha Paw-U Kyaw, Insects as unidentified flying objects: comment, App. Op., 18, (16), págs. 1723-2724, 15 de agosto de 1979.

(40) Mankin R. W., Insects as unidentified flying objects: author»™s reply to comments; 2, Appl. Op., 18, (16), págs. 2724-2725, 15 de agosto de 1979.

(41) Callahan S. Phillip & Mankin R. W., Insects as unidentified flying objects,, Appl. Op., 17, (21), págs. 3355-3360, 1 de noviembre de 1978

(42) Callahan S. Phillip, Insects as unidentified flying objects: author»™s reply to comments; 1, Appl. Op., 18, (16), págs. 2724-2725, 15 de agosto de 1979.

(43) Benedicks C., Theory of the lightning-balls and its applications to the atmospheric phenomenon called flying saucers, Arkiv foer Geofysik, 2, pág. 1, 1954.

(44) Klass J. Phillip, Plasmas theory may explain many UFO»™s, Aviation Week and Space Technology, 75, (23), pág. 52, 22 de agosto de 1961.

(45) Klass J. Phillip, Plasmas theory may explain many UFO»™s, Aviation Week and Space Technology, 75, (23), pág. 52, 22 de agosto de 1961.

(46) Klass J. Phillip, UFO»™s: Identified, Random House, New York, 1968.

(47) Klass J. Phillip, UFO»™s: Explained, Random House, New York, 1974.

(48) Klass J. Phillip, Letter, Astronautics and Aeronautics, pág. 4, octubre de 1975.

(49) Klass J. Phillip, UFO»™s: The public deceived, Prometheus Books, New York, 1983.

(50) Lopez Roberto (pseudónimo de Luis Ruiz Noguez), ¿OVNIs o rayos de bola?, en Contactos Extraterrestres, 126, págs. 32-35 y 44-45, México, 28 de octubre de 1981.

(51) López Roberto, Las peligrosas bolas incendiarias, en Contactos Extraterrestres, 127, Págs. 38-41, México, 11 de noviembre de 1981.

(52) Ruiz Noguez Luis, Las dudas de un OVNI-Crash, en UFO Press, 18, Págs. 10-14, Buenos Aires, octubre de 1983.

(53) Makarov, Tekhnika Molodieji, agosto de 1967.

(54) Bergier Jacques, Agents secrets contre armes secrètes, Ediciones J»™ai Lu, págs. 194-195, Paris, 1971.

(55) Altshuler M. D., Atmospheric electricity and plasma interpretations of UFO»™s, en Scientific Study of Unidentified Flying Objects, Edward U. Condon (editor). E. P. Dutton, Capítulo VII, pág. 723, New York, 1969.

(56) McCampbell M. James, Ufology, Celestial Arts, California, págs. 34-40, 1976.

(57) Coghlin J. William, The UFO as a plasma, Space Aeronautics, (49), pág. 91, marzo de 1968.

(58) Singer Stanley, Unknown things in the sky, Astronautics and Aeronautics J., 6, (12), pág. 12, 1963.

(59) Ritchie D. J., Red lightning. Are the soviets using ball lightning as an anti-missile weapon?, Bendix Aviation Corp., Research Lab. Div. Data sheet, agosto-septiembre de 1959.

(60) Ritchie D. J., Reds may use lightning as weapon, Missiles and Rockets, 5, pág. 13, 24 de agosto de 1959.

(61) Dolbear A. E., Globular lightning, Science, 11, pág. 38, 1888.

(62) Cerrillo M., Sobre las posibles interpretaciones electromagnéticas del fenómeno de las centellas, Comisión Impulsora y Coordinadora de la Investigación Científica, Anuario I, Pág., 1943.

(63) Anonym, An account of the death of Mr. George William Richmann, professor of experimental philosophy, a member of the Imperial Academy of Sciences at Petersburg, Roy. Soc. Lon. Phil. Trans., traducido del High Dutch, 49, pág. 61, 1755.

(64) Stenhoff M., Ball lightning, Nature, 260, pág. 596, 1976.

(65) Owen R., Ball or globe lightning, Amer. J. Meteorol., 3, pág. 383, 1886.

(66) Babick M., Kugelblitzbeobachtung in Cottbus, Zeit. Meteorol., 9, pág. 378, 1955.

(67) Minchin G. M., Personal injury from a fire-ball, Nature, 53, pág. 5, 1895.

(68) Hill L. Edward, Ball lightning, Amer. Scientist, 58, pág. 479, 1970.

(69) Israel H., Kugelblitz-Aufnolimen, Physik Blatter, 16, pág. 348, 1960.

(70) Lindeman G., Verletzungen durch kugelblitz, Kosmos, 47, pág. 380, 1951.

(71) McMillan W. G., On the phenomenon of the lightning discharge, as illustrated by the strinking of a house in Cossipore, Calcuta, Nature, 40, pág. 295, 1889.

(72) Carruthers J., & Foster B. D. P., Ball lightning, Meteorol. Mag., 72, pág. 210, 1947.

(73) Covington A. E., Ball lightning, Nature, 226, pág. 252, 1970.

(74) Flammarion Camilo, Les victimes de la foudre et ses caprices, Bull. Soc. Astron. Fr., 13, pag. 145, 1899.

(75) Flammarion Camilo, Les victimes de la foudre et ses caprices, Bull. Soc. Astron. Fr., 18, pag. 153, 1904.

(76) Flammarion Camilo, Foudre en boule, Bull. Soc. Astron. Fr., 18, pag. 378, 1904.

(77) Flammarion Camilo, Les caprices de la foudre, Bull. Soc. Astron. Fr., 18, pag. 421, 1904.

(78) Flammarion Camilo, Les mystères de la foudre, Bull. Soc. Astron. Fr., 22, pag. 490, 1908.

(79) Flammarion Camilo, Foudre en boule, Bull. Soc. Astron. Fr., 25, pag. 262, 1911.

(80) Ocholko I. G., Aviation meteorology, Foreing Science Bull., 2, (4), Apéndice I, pág. 60, 1966, traducido de Aviatsion nnaya meteorologiya, Leningrado, Meteorologicheskoy Izdate»™stovo, pág. 239, 1963.

(81) Wosskowu M., (sin título), Foreing Science Bull., 2 (4), Apéndice II, pág. 52, 1966, traducido de Przeglad Lotniczy, (12), pág. 12, 1966.

(82) Op. cit.

(83) Op. cit.

(84) Geddes A. E. M., Meteorology, Blackie and Son, London, Segunda edición, 1939.

(85) McIntosh D. H., Lightning damage, Weather, 28, pág. 160, 1973.

(86) Op. cit.

(87) Flammarion Camilo, Death and its mystery, The Century Co., Vol II, pág. 268, New York, 1922.

(88) McNally J. R., Preliminary report on ball lightning, Oak Ridge National Lab. Report, ORNL-3938, mayo de 1966.

(89) Op. cit.

(90) Anderson F. J, Bveinbjorn S., Blanchard D. C., Gatham S., Jonasson S., Moore C. B., Survilas H. J., & Vonnegut B., Electricity in volcanic clouds, Science, 14, pág. 1179, 1965.

(91) Frier G. D., The electric field of a large dust devil, J. Geophys. Res., 65, pág. 3504, 1960.

(92) Funder L., Emittlung, ursachen und bedeutung des ionegehaltes der gruben wetter, Beitr. Zur Geophys. 54, pág. 370, 1939.

(93) Schonland B. F. J., The flight of the thunderbolts, Oxford Univ. Press, London 1950.

(94) Barry Dale James, Ball lightning and bead lightening, Plenum Press, New York, 1980.

(95) Singer Stanley, The nature of ball lightning, Plenum Press, Tercera impression, New York, 1978.

(96) Humphreys W. J., Physics of the air, McGraw Hill, New York, Part I, Mechanics and thermodinamics of the atmosphere, Capítulo XVIII, Lightning, pág. 369, 1940.

(97) Schonland B. F. J., The lightning discharge, Handbuch der Physik, 22, pág. 576, Berlin, 1956.

(98) Szpor S., Éclair globulaire, éclair en chapelet, nouvelle théorie, Acta Geophys. Pol., 25, (4), pág. 327, 1977.

(99) Trowbridge J., Ball lighting, Sci. Am., 96, pág. 489, 1907.

(100) Argyle Edward, Ball lightning as an optical illusion, Nature, 230, (5290), pág. 179, 1971.

(101) Charman W. N., After images and ball lightning, Nature, 230, pág. 576, 1971.

(102) Jennison R. C., Ball lightning an after images, Nature, 230, pág. 576, 1971.

(103) Davies P. C. W., Ball lightning or spots before the eyes?, Nature, 230, pág. 576, 1971.

(104) Fehr U., Ball of fire, a laboratory illuminated cloud phenomenon, Tesis de doctorado, Hebrew University, Jerusalem, Israel, 1963.

(105) Barry Dale James, Laboratory ball lightning, J. Atmos. Terres. Phys., 30, pág. 313, 1968.

(106) Hildebrand-Hildebrandson H., Kugelblitz, (resumen), Fortschr. Phys., 39, (3), pág. 518, 1883.

(107) Nauer H., Modellversuche zum kugelblitz, Zeit Angew. Phys., 5, (12), pág. 441, 1953.

(108) Plante G., Reproduction du phénomène de la foudre en boule, Ciel et terre, 11, pág. 424, 1890.

(109) Thornton W. H., On thunderbolts, (resumen), Fortschr. Phys., 67, (3), pág. 342, 1911.

(110) Op. cit.

(111) Powell J. R., Zucker M. S., Manwaring J. F., & Finkelstein D., Laboratory production of self-sustained atmospheric luminosities, Brookhaven National Laboratory, Report 10625, 1965.

(112) Smirnov B. M., Ball lightning model, Sov. Phys. Tech. Phys., 22, (4), Pág. 488, 1977, traducido del Zh. Tekh. Fiz., 47, Pág. 814, 1977.

(113) Toepler M., Kugelblitz und almsfeuer?, Phys Blatter, 16, pág. 348, 1960.

(114) Altshuler M. D., House L. L., & Hildner E., Op. cit.

(115) Hill C. R., & Swoby F. D., Op cit.

(116) Ashby D. E. T. F., & Whitehead C., Is ball lightning caused by antimatter meteorites?, Nature, 230, pág. 180, 1971.

(117) Uman M. A., Lightning, McGraw Hill, pág. 240, New York, 1969.

(118) Fleming S. J., & Aitken M. J., Radiation dosage associated with ball lightning, Nature, 252, pág. 220, 1974.

(119) Koldamasov A., Ball lightning in liquids, Tekh. Molod., (8), pág. 24, 1972.

(120) Crew F. W., Atmospheric mysteries and lightning, Electr. Rev., 199, (24), pág. 21, 1976.

(121) Wooding E. R., Ball lightning, Nature, 199, pág. 272, 1963.

(123) Op. cit.

(124) Kapitza L. Peter, O priroda sharovoi molnii, Dokl. Akad. Nauk., SSSR, 101, Pág. 245, 1955.

(125) Hill L. Edward, Ball lightning as a physical phenomenon, J. Gheopys. Res., 65, (7), pág. 1947, 1960.

(126) Powell J. R., Zucker M. S., Manwaring J. F., & Finkelstein D., Laboratory production of self-contained atmospheric luminosities, Abstract 2C-2, Bull. Amer. Phys. Soc., 12, pág. 751, 1967.

Secuencia de siete fotos de centellas obtenidas en el laboratorio de producción de luminosidades atmosféricas autocontenidas (LPSAL), por Powell, Zucker, Manwaring y Finkelstein.

Centella creada en una celda de laboratorio. La descarga se forma entre el electrodo positivo en punta y un electrodo negativo plano. De L. B. Loeb & A. F. Kip, Electrical Discharges in Aira t Atmospheric Pressure, J. Appl. Phys. Vol. 10, 1939, Pág. 142.

Equipo del LPSAL.

Aparato utilizado para producir centellas mediante descargas de radiofrecuencia a presión atmosférica. De J. R. Powell & D. Finkelstein, Structure of Ball Lightning, Advances in Geophysics, Vol. 13, 1969, Pág. 141.

Centella confinada dentro del aparato de cristal. De J. R. Powell & D. Finkelstein, Structure of Ball Lightning, Advances in Geophysics, Vol. 13, 1969, Pág. 141.

Esta foto y las dos siguientes son centellas producidas por los doctores Sergei Emelin y Alexei Pirozerski del Instituto de Investigaciones Científicas (Radiofísica y Física), de la Universidad Estatal de San Petersburgo.

Experimentos del doctor Emelin.

Kiril Borissov Chukanov ha construido diversos aparatos para fabricar centellas. En la foto el Angeline V en donde se puede observar una centella. Al lado está la hija de Chukanov, Laura.

Ampliación de la escotilla del Angeline V. Se puede ver la centella en su interior.

Descarga esférica en un horno de microondas. Esta centella, de una pulgada de diámetro, fue creada por Carl A. Willis utilizando un horno de microondas de 700 Watts. La centella duró 4 segundos.

Diversos experimentos de formación de centellas en el laboratorio de Jean Louis Naudin,

Centella fabricada en por los miembros del Tesla Coil Builders of Fort Worth por Phil Rembold.

Los doctores Vladimir Dikhtyar y Eli Jerby, del Departamento de Ingeniería de la Universidad de Tel Aviv.

Centellas (y 2)

CAMPO MAGNÉTICO

A. J. F. Blair (33), basado en un relato de 1811 en el que se informa que el sacristán de una iglesia no pudo tañer las campanas debido a la presencia de unas centellas, calcula que las centellas debieron haber producido un campo magnético de al menos 150 G para así impedir todo movimiento de las campanas. Para simplificar los cálculos, Blair supuso que las campanas se podrían comportar como un disco rotando en un campo magnético. Esto generaría un potencial al pasar las líneas de flujo magnético a través del metal, el cual está dado por:

V = (N H A) x 108

Donde N es la velocidad angular en revoluciones por segundo; A es el área del disco; H la fuerza del campo magnético en Gauss; y V, el potencial eléctrico en voltios.

La energía disipada como un flujo de corriente eléctrica en el metal con un potencial V y una resistencia R es:

ε = 2V2

R

Se incluyó el factor 2 debido a una revolución del disco en el campo magnético.

El trabajo realizado se supone que es igual al requerido para que se produzca sonido en un tañido de campana. También se supone una fuerza de 10 Kg que sería la utilizada por el sacristán para tirar de la cuerda de la campana. Sustituyendo estos valores, el valor epsilon resulta ser de 100 W/seg.

Blair supuso un diámetro de 70 centímetros con una resistencia de 3.5 x 10-6 ohms, un grosor de 7 centímetros y una longitud de 80 centímetros. La resistencia del bronce es de 18 x 10-6 ohm/cm.

Con estos datos, resolviendo para V y sustituyendo su valor en la primera ecuación obtenemos que H es igual a 150 Gauss. Este es en realidad un valor aproximado ya que no se tomó en cuenta la distribución de las corrientes parásitas, además de que la resistencia no era la correcta, ni la campana es un disco como se consideró como primera aproximación.

ENERGÍA

De acuerdo con Barry, la energía total de la centella está dada por:

r = R

E0 = ∫ f(r) 4πr2 dr

r = 0

donde f(r) es la distancia radial de la densidad de energía, r, es la distancia radial y R es el radio de la esfera.

Si existe una distribución uniforme de densidad energética se puede suponer que f(r) = cte, por lo que E = f(r) V, donde V es el volumen de la esfera.

La distribución de energía puede estar definida por:

ε = E0

V

El 3 de octubre de 936, el Daily Mail de Londres publicó que un observador había reportado una centella que había cortado el alambre de una línea telefónica y quemado el marco de su ventana para finalmente caer en un una cubeta en donde había 4 galones de agua haciéndoles hervir. Este caso fue descrito por W. Morris (34) y discutido por G. L. Goodlet (35). Este último supuso que el diámetro de la centella era de 15 centímetros, que se utilizaban galones ingleses (18 litros) y que la temperatura inicial del agua era de 20 °C y la final de 90 °C (el agua se mantenía caliente después de 20 minutos). Sabiendo que es necesaria una caloría para elevar en 1 °C la temperatura de 1 centímetro cúbico de agua, tenemos:

E0 = (1000 cc/l) x (18 litros) x (1 cal/cc °K) x (363 °K «“ 293 °K) = 1.26 x 106 Cal

Como un Joule equivale a 4.186 calorías, entonces:

E0 = 3 x 105 J

Si la centella tenía unos 15 centímetros de diámetro, entonces su volumen era de:

V = 4 πr3 = 1,767 cc

3

y por lo tanto su densidad de energía fue de 170 J/cc.

Este valor es ligeramente menor del que resultaría si incluimos una evaporación de agua. Se necesitan 2,257.1 J/cc si suponemos que se evaporaron 454 cc de agua.

Se han hecho más cálculos con otros informes y se ha descubierto que la densidad de energía varía de 2 x 10-3 (R. K Golka y R. W. Bass -36-) a 2.4 x 107 J/cc (Mathias -37-). De estos valores podemos suponer que existen, posiblemente, varios fenómenos conectados con el membrete de centella.

LOS FENÓMENOS DETRÁS DE LAS CENTELLAS

De acuerdo con Barry se les ha confundido con la Luna, meteoros, pájaros, Ignis fatuus, fuegos de San Telmo. Algunos autores las han relacionado con OVNIs: M. L. Shapiro (38) Kyaw Tha Paw-U (39), R. W. Mankin (40), Philip S. Callahan y R. W. Mankin (41-42), C. Benedicks (43), Philip J. Klass (44-49), Roberto López (50-51), Luis Ruiz Noguez (52), Makarov (53), Jacques Bergier (54), M. D. Altschuler (55), James M. Campbell (56), y William J. Coghlin (57).

El escritor alemán Freder van Holk (citado por Bergier) cree que los OVNIs son puntos de impacto de haces de onda emitidos para dirigir las centellas y que se reflejarían sobre las capas ionizadas de la atmósfera. Esto explicaría sus movimientos extremadamente rápidos y silenciosos. Su luminosidad sería debida a la ionización de los gases enrarecidos del aire por ondas cortas.

McCampbell sostiene que: «Considerando las similitudes entre las centellas y los OVNIs no es sorprendente que puedan ser confundidos con un mismo fenómeno y así entren en el campo de la literatura OVNI».

Según Makarov la mayoría de los OVNIs observados son el resultado de las centellas y sus efectos. Por su parte Félix U. Ziegel dice que los OVNIs podrían ser plasmas formados en la estratosfera por partículas ionizadas provenientes de la corteza terrestre.

Otros autores, Singer (58) y D. J. Ritchie (59-60) las han considerado como armas secretas de los soviéticos.

MUERTES POR CENTELLA

A. E. Dolbear (61) ha reportado muertes, de personas y animales, debidas a las centellas. M. Cerrillo (62) discute el caso de varias personas electrocutadas por una centella en México.

El caso más antiguo que se conoce de una muerte debida a una centella es la del doctor George William Richman en 1752 (63). Varios autores, M. Stenhoff (64), R. Owen (65), M. Babick (66), G. M. Minchin (67), Edward L. Hill (68), H. Israel (69), G. Lindemann (70), W. G. McMillan (71), J. Carruthers & B. D. P. Foster (72), A. E. Covington (73), y Camilo Flammarion (74-79), han reportado daños a objetos diversos. I. G. Ocholko (80), M. Wosskowy (81), Kogan-Belestkii (82), y Winchester (83) informan de aviones que han colisionado con centellas. A. E. M. Geddes (84) y D. H. McIntosh (85) han estudiado agujeros en ventanas producidos por centellas, y Roberto López (84) estudió los incendios producidos por las mismas.

No obstante de ocasionar algunos «desperfectos», las centellas han transportado, sin daño, objetos frágiles como espejos; vaciado tinteros; desnudado personas; y en una ocasión, quemado el vello púbico a una muchacha, sin causarle ningún otro daño, tal y como lo reporta Flammarion (87).

FRECUENCIA

De acuerdo con estos datos, parece seguro decir que las centellas no sólo existen sino que ocurren tan frecuentemente como los relámpagos normales, es decir, unas 107 (diez millones) centellas por día en toda la Tierra. Se calcula que han sido observadas por aproximadamente el 5% de la población mundial. Los estudios de McNally (88) y Rayle (89) disipan algunas dudas sobre la existencia de las centellas. Estos autores entrevistaron a gente de la AEC y de la NASA y encontraron suficientes respuestas positivas (5 a 10% de las personas interrogadas) para dejar asentada la existencia de las centellas y determinar algunas de sus características.

No obstante, Rayle ha señalado una consecuencia totalmente inesperada de tales estudios. Comparó la frecuencia de aparición de las centellas y los relámpagos ordinarios. Mientras que la descarga es visible para miles de personas, la observación de las centellas debería estar supeditada a varios factores estocásticos. Pero la conclusión sorprendente del estudio de Rayle es que no hay mucha diferencia en la frecuencia como podría esperarse. Cerca de la mitad (44%) de la gente que reportó haber visto una centella también reportó huellas físicas de relámpagos. Esto podría hacernos suponer que las centellas ocurren por lo regular cerca del punto de impacto de un rayo.

Pero las cosas no son tan simples. Se ha observado centellas independientemente de la existencia de una tormenta eléctrica. Se las ha visto durante los terremotos (de lo que hablamos en otro capítulo), erupciones volcánicas, tormentas de viento, tornados, ciclones y temporales.

F. J. Anderson, S. Bveinbjom, D. C, Blanchard, S. Gathman, S. Jonasson, C. B. Moore, H. J. Survilas, y B. Vonnegut (90) mostraron que existen intensos campos eléctricos en las nubes volcánicas. G. D. Frier (91) encontró fuertes campos eléctricos como resultado de la fricción de partículas de polvo. L. Funder (92) también reportó intensos campos eléctricos debidos a causas similares.

Las condiciones atmosféricas en las que se pueden dar las centellas son de unos 20 °C de temperatura y una humedad relativa de cerca del 100% (aproximadamente 3% de vapor de agua por volumen). Puede o no estar lloviendo. Según B. F. J. Schonland (93) ocurren más frecuentemente en lugares altos que en bajos. Hobana y Weverbergh dicen que surgen principalmente en julio y agosto (en el hemisferio Norte).

No son pues un fenómeno raro. Se conocen más de 100 fotografías de centellas y de relámpagos en forma de rosario: Barry (94) presenta varias de ellas.

TEORÍAS SOBRE LAS CENTELLAS

Se ha presentado cientos de teorías para tratar de explicar las características y propiedades de las centellas. Singer (95) las agrupa en 13 grandes bloques: Teorías aglomerativas; Estructuras tipo jarra de Leyden; Transformación de relámpagos lineales a relámpagos esféricos; Generación de centellas por medios químicos; Teorías nucleares; Modelos de polvo y gotas cargadas eléctricamente; Nubes ionicomoleculares; Estructuras en vórtice; Centellas como una descarga eléctrica; Esferas luminosas a partir de sólidos vaporizados; Teorías tipo plasma; Modelos de plasmoides; y Formación de centellas por radiación electromagnética natural.

Se han postulado hipótesis de alucinaciones, ilusiones ópticas y de imágenes posteriores positivas (fosfenos). Así por ejemplo W. J. Humpreys (96) y B. F. J. Schonland (97) suponen que las centellas son ilusiones ópticas y S. Sopor (98), J. Trowbridge (99) y Edward Argyle (100) creen que son efectos debidos al encandilamiento por una intensidad luminosa. Este último autor, basado en Rayle quien afirmó que el 44% de las personas que reportan centellas las confunden con los puntos de impacto de los relámpagos ordinarios, supone que las centellas no son más que fosfenos producidos por el destello del relámpago. Con esta hipótesis lograría explicar los reportes de centellas que atraviesan paredes y ventanas como si fueran fantasmas.

Las imágenes posteriores negativas son más comunes que las positivas. Las segundas son el resultado de la observación de una fuente de iluminación brillante. Es un efecto de los conos del ojo y por lo regular se forman cerca, pero no en el centro de la retina. El observador, por lo tanto, intentará centrar el objeto, sin lograrlo, lo cual producirá la ilusión de movimiento al azar en el objeto, con cambios de dirección y giros bruscos. La velocidad aparente del objeto puede ser muy grande. Este tipo de imágenes dura unos 2 a 10 segundos, dependiendo de una gran variedad de circunstancias. No producen sonido y desaparecen sin dejar rastro.

Otros autores, tales como W. N. Charman (101), R. C. Jennison (102), y P. C. W. Davies (103) están en desacuerdo con esta teoría. Objetan que existen varios reportes en donde el evento fue observado simultáneamente por varias personas y, aparentemente, también por animales. Si fuesen fosfenos cada testigo reportaría una forma diferente. Davies antepone dos objeciones: la similitud en los reportes de los testigos; existiendo muchas más fuentes de luz que los relámpagos, sería difícil explicar la gran relación entre las centellas y las tormentas.

Humpreys cree que las centellas son descargas fijas o descargas en brocha, tal como los Fuegos de San Telmo, o simplemente ilusiones de óptica, debidas probablemente a la persistencia de la visión.

La apariencia de movimiento puede ser producida por cambios en la luminosidad: un incremento en tamaño sería un acercamiento y una disminución se interpretaría como un alejamiento al observador.

Efectos autocinéticos producidos por el movimiento muscular del ojo pueden crear movimientos erráticos.

Sin embargo, la teoría de Humpreys no puede explicar las centellas que se han visto en el aire sin ningún contacto con el terreno o superficies sobresalientes de él, tales como antenas o árboles.

HIPÓTESIS QUÍMICAS

Se han propuesto varias hipótesis sobre el origen químico de las centellas.

U. Fher (194) propuso que se debían a la combustión del metano (una atmósfera con un 1 o 2% de metano). Barry (105) apunta la necesidad de dos condiciones: a) algún tipo de descarga eléctrica atmosférica y b) presencia de hidrocarburos (CH4, C3H8, etc.). Se debe enfatizar que la densidad de los hidrocarburos debe ser menor que la necesaria para la combustión.

El hidrocarburo se comenzará a ionizar debido a la descarga eléctrica y se formará una pequeña región de hidrocarburos más complejos, incrementándose así la densidad. En ese momento una descarga eléctrica puede producir la combustión, que se mantendrá si la densidad de los hidrocarburos es la adecuada.

Los modos de decaimiento se explicarían así:

el silente, si la densidad de hidrocarburos cae por debajo del límite necesario para la combustión, y

si la mezcla de hidrocarburo-aire se hace explosiva.

Las dimensiones de la esfera se pueden calcular suponiendo la relación de energía de llama esférica normal de Lewis y von Elbe:

E = d3 (Tb «“ Ta) cp

6

donde E, es la energía; d, el diámetro; c, el calor específico de la mezcla de hidrocarburos; p, la densidad de la mezcla; Ta la temperatura inicial de la mezcla; y Tb la temperatura final.

Suponiendo un mecanismo de formación con la densidad inicial de CH4 menor de la necesaria para la combustión, se obtendrá una densidad resultante de hidrocarburos más complejos mayor que la necesaria para mantener la combustión dentro de un pequeño volumen (C3H8 al 3% por ejemplo), con una energía de 102 a 106 J, un calor específico de 0.28 cal/g °C, una densidad de 0.2 x 10-3 g/cc y una temperatura final de 4,000 °C, para una centella cuyo diámetro oscile entre los 6 y 130 cm.

H. Hildebrand-Hildebrandson (106) cree que las centellas se deben a procesos de combustión. Esta hipótesis fue investigada por H. Nacer (107) y G. Plante (108). Otras hipótesis químicas han sido sugeridas por W. H. Thornton (109) y Benedicks (110). Este último propuso la formación de óxidos de nitrógeno catalizados por relámpagos ordinarios o la descomposición del ozono formado en la descarga del relámpago. Estas reacciones podrían explicar los colores y olores reportados. Pero no pueden explicar la duración del fenómeno.

También se ha propuesto que sean esferas de oxígeno molecular caliente producidas por un rayo. El O2 se disocia completamente a 4,000 °K produciendo energía considerable (varios miles de Joules en 20 centímetros). Empero, el mezclado térmico convectivo puede destruir las esferas así formadas en menos de un segundo.

Algunos de los miembros del Laboratorio de Producción de Luminosidades Automantenidas, de la Sociedad Física Americana, División de Física de Plasmas de Boston, Massachussets (Powell, M. Zucker, J. F. Manwaring, y Finkelstein) han estado muy activos en este campo (111).

Powell supone una excitación electrónica metaestable de nitrógeno y oxígeno, que no requiere altas temperaturas para almacenar energía y que emite luz visible a bajas temperaturas (2,000 °C), aunque la esfera formada desaparece en un segundo aproximadamente.

El fenómeno del «nitrógeno activo» (una fosforescencia del nitrógeno, de gran persistencia bajo ciertas condiciones), fue estudiado por Rayleigh, quien encontró que el ojo adaptado a la oscuridad puede ver esta luminiscencia hasta cerca de media hora después que paró la descarga excitadora. Esta es la luz de la recombinación del nitrógeno.

Otros autores que han estudiado las hipótesis de las reacciones químicas fueron B. M. Smirnov (112) y M. Toepler (113) quien sugirió que las centellas son un fenómeno eléctrico o electroquímico. Thornton propuso que las centellas estaban compuestas predominantemente de ozono y según él la explosión se debía a que éste se descomponía rápidamente en oxígeno.

MODELOS NUCLEARES

Se han considerado modelos radiactivos, en donde se producen especies inestables de corta vida media por medio de reacciones nucleares con un haz de electrones relativísticos.

Los primeros autores en proponer la teoría del origen nuclear fueron Altschuler, House & Hildner (114). Hill y Sowby (115) calculan que la media de rayos absorbidos por el cuerpo humano a dos metros de distancia de la centella, sin protección, puede ser de 175 rad/seg para el isótopo O15 y de 325 rad/seg para el F17. Con estas dosis es raro que no se hayan reportado casos de envenenamiento radiactivo.

De acuerdo con D. E. T. F. Ashby (116) y M. A. Uman (117), se puede encontrar radiación del orden de 1 a 1,000 rad en los lugares en donde se han visto centellas. Uno de estos casos fue analizado por S. J. Flemming y M. J. Aitken (118).

El 8 de mayo de 1970 apareció una centella en una casa de North Berkshire. La casa estaba construida de ladrillos y en ese entonces tenía 25 años de antigüedad, por lo cual las incrustaciones de mineral de los ladrillos podían exhibir un nivel de Termoluminiscencia (TL) significativamente mayor que la dosis recibida por la radiación anual de Uranio, Torio y Potasio que pudiera tener la arcilla con la que se hicieron los ladrillos.

Los análisis radiactivos de la arcilla (con contadores de partículas alfa para U y Th, y fotometría de llama en el caso de K) indicaron que aquellas incrustaciones cristalinas no tenían una radiactividad propia, tal como el cuarzo, y experimentaron una dosificación anual de unos 0.5 rad que acumularon un equivalente TL a 12 rad desde que fueron cocidos los ladrillos.

Relámpago en rosario formado por una explosión durante un experimento de la marina americana en el mar. De G. A. Young, A Lightning Strike of an Underwater Explosion Plume, U. S. Naval Surface Weapon Center, TR 61-43, Feb. 1962.

El señor H. Jack fotografió esta centella en 1955. Sobre el canal principal se puede observar un tenue duplicado. De F. Wolf, Interessante Aufnahme eines Kugelblitzes, Naturwiss. Vol. 43, 1956, Pág. 415.

Fragmento de centella y ampliación de la misma fotografía.

Luces de Hessdalen, muy parecidas al fenómeno de las centellas.

Centella. De H. Norinder, Om Blixtens Natur, Kungliga Ventenskapssocietetens Arsbok, Vol. 94, 1939, Pág. 39.

Foto tomada de un videotape. La centella duró 20 a 40 milisegundos y estaba a unos 300 metros sobre el terreno y tenía un diámetro de unos 5 metros. De A. J. Eriksson, Video-Tape Recording of a Posible Ball Lightning Events, Nature, Vol. 268, 1977, Pág. 35.

Este relámpago en Suiza inflamó ciertas sustancias contenidas en la atmósfera para formar una impresionante forma danzante.

Fotografía perteneciente a una película de una centella formada por un rayo nube-tierra. La esfera en la parte inferior permaneció luego de desaparecer el rayo. De P. Hubert, Tentative pour Observer la Foudre en Boule dans la Voisinage d»™Eclairs Declenches Artificiellement, Raport DPH/EP/76/349, 5 Mai 1975, Commissariat á l»™Energie Atomique, Service d»™Electronique Physique, Centre d»™Etudes Nucléaires de Saclay, France.

Parte de la secuencia de Hubert. Se especula que los gases, calentados por el flujo de corriente, son la fuente de iluminación. De P. Hubert, Tentative pour Observer la Foudre en Boule dans la Voisinage d»™Eclairs Declenches Artificiellement, Raport DPH/EP/76/349, 5 Mai 1975, Commissariat á l»™Energie Atomique, Service d»™Electronique Physique, Centre d»™Etudes Nucléaires de Saclay, France.

Canal de descarga que forma un relámpago en rosario, con una larga cola Tesla de un potencial cercano a 2 x 107 V con una energía de descarga de aproximadamente 12 J por pulso. Esta foto pertenece a una película de 16 mm. Este relámpago duró cerca de 0.16 segundos.

Centella fotografiada con película rápida. Los movimientos serían imperceptibles al ojo. De R. E. Holtzer, E. J. Workman & L. B. Snoddy, Photographic Study of Lightning, J. Appl. Phys. Vol. 9, 1938, Pág. 134.

Centella. La cauda ondulante se debe a los movimientos de la cámara. De C. J. Young, Lightning freaks at Petersborough, The Petersborough Citizen, London, 25 sept. 1934.

Traza dejada por una centella. De P. Zoege von Manteuffel, Eine Blitzaufnahme, Umschau, Vol. 42, 1938, Pág. 587.

Centella en una trayectoria descendente. De I. Shagin, Ball Lightning Photograph, Ogonek, Vol. 20, 1960, Pág. 34.

Centella en el bosque fotografiada con película de alta velocidad.

Relámpago en rosario fotografiado por Michael Fewings, de Australia, en 1999.

En la parte inferior de la fotografía, trazo de una centella durante una noche de tormenta. Fotografía de Bob Litchfield, Australia.

Foto sin datos.

Relámpago en rosario en la iglesia de Bayside, New York.

Una traza de intensidad modulada. El fotógrafo no observó el fenómeno y se cree que pudiera ser una lámpara de alumbrado público, mientras que la traza se debe al movimiento de la cámara. Se ha presentado como la fotografía de un OVNI. De R. C. Jennings, Path of a Thunderbolt?, New Scientist, Vol. 13, 1962, pág. 156.

Trayectoria de una centella. Foto sin datos.

Hermosa fotografía de un fenómeno tipo centella sobre el volcán Popocatépetl. F. J. Anderson y sus colegas encontraron que las nubes volcánicas poseen intensos campos eléctricos que pueden producir centellas.

Extraña centella fotografiada por Ern Mainka en Australia.

Una de las más hermosas fotografías de centellas, o de relámpagos en rosario, es esta tomada en agosto de 1961 por dos científicos atmosféricos de Los Alamos, Nuevo México.

Foto perteneciente al video tomado por dos adolescentes en Karsamstag Zwönitz, Sajonia, en el 2003, en el que aparece un relámpago en rosario. El objeto duró 2 segundos y ocupa 56 cuadros del video. Compárelo con la foto del OVNI de Calgary, siguiente.

Foto sin datos.

Varias reproducciones de la fotografía tomada en Nagano, Japón, en 1988.

Un racimo de centellas fotografiadas por el profesor J. C. Jensen, Ball lightning, Scientific Monthly, Vol. 37, 1933, Pág. 190.

Otro ejemplo de la secuencia tomada por Jensen. De J. C. Jensen, Ball lightning, Physics, Vol. 4, 1933, Pág. 372.

Centella fotografiada por J. C. Jensen, Ball lightning, Scientific Monthly, Vol. 37, 1933, Pág. 190.

Centella saltando una cerca. En realidad se formó sobre uno de los polos de la cerca, por lo que bien podría ser no una centella sino un fuego de San Elmo.

Fotografía de una centella tomada en Alemania. Me parece haber visto esta foto presentada como un OVNI. Merhaut O., Eine Bemerkenswerte Blitzaufnahme, Naturrwissenschaften, Vol. 32, 1944, Pág. 212.

¿Centella en el bosque?

Centella creada en el laboratorio por el físico japonés Yoshi Hiko Ohtsuki, de la Universidad de Waseda, en 1990.

Sin datos.

Centella fotografiada en Brasil.

Centella sobre un transformador.

Esta centella salió por detrás de la estructura y emitía residuos luminosos a su paso. En E. Kuhn, Ein Kugelblitz auf einer Moment-Auf-nahme?, Naturwiss. Vol. 38, 1951, Pág. 518.

Dibujo de una centella vista a través de una ventana, en Viena. La bola luminosa eyectaba una especie de residuo. De W. von Haidinger, Elektrische Meteore am 20 October 1868 in Wien Beobachtet, Sizber. Math-Naturwiss. Kgl. Akad. Weis, Wien, II, Vol. 58, 1968, Pág. 761.