Las luces de los terremotos (y 2)

EN EL PAÍS DEL SOL NACIENTE

Japón es un sitio con gran actividad sísmica, y no es raro que una buena parte de los recursos económicos asignados a la investigación científica, se dediquen al estudio de los terremotos. El fenómeno en Japón es conocido desde la antigüedad. Un viejo haiku dice lo siguiente:

«La tierra le habla

suavemente a la montaña,

que tiembla

e ilumina el cielo».

El geólogo japonés Kinkiti Musya mencionó que la mayoría de los objetos vistos durante los temblores tienen las siguientes formas: haz, columnas, bolas de fuego, pelotas, embudos y trompetas. La mayoría de estos fenómenos se ven en el epicentro del temblor. Bajo la luz de estos fenómenos se pueden ver los árboles y las casas sin necesidad de otra fuente de luz. Se calcula que tienen aproximadamente 1 x 108 CP (Candle Power) y pueden llegar a iluminar una región a 100 kilómetros de distancia.

Musya clasificó las luces de los terremotos en:

1. Iluminación instantánea e indefinida

a. relámpagos

b. chispas de luz

c. bandas delgadas de luz

2. masas móviles luminosas bien definidas

a. bolas de fuego (centellas)

b. columnas de fuego verticales

c. haz de fuego (horizontal y oblicuo)

d. chimeneas luminosas

3. Flamas y emanaciones brillantes

a. flamas

b. llamas pequeñas

c. múltiples chispas

d. vapor luminoso

4. Fosforescencia de nubes y cielo

a. luz difusa en el cielo

b. nubes luminosas

Torahiko Terada, quien investigó profundamente estos fenómenos hizo la siguiente descripción de ellos:

«Características del fenómeno.

«1.- Color e intensidad de la luz.

«La mayoría de las veces se reporta un azul pálido similar al de los relámpagos. Sin embargo, hay testigos que informan que el color era rojo o naranja parecido al de las chispas.

«Causas probables del fenómeno.

«a) Fuegos distantes. Durante los temblores se producen algunos incendios que podrían confundir a observadores distantes.

«b) Relámpagos. Es poco probable que ocurran los dos fenómenos al mismo tiempo (Temblor y tormenta).

«c) Chispas eléctricas. Corto circuitos. Esto no podría explicar porqué la mayoría de los reportes localizan el fenómeno sobre el epicentro del temblor. Tampoco explica la duración del fenómeno, ya que un corto circuito tiene una vida media corta. Y finalmente no explica todos los reportes que se dieron antes de que se utilizara la electricidad.

«d) Triboluminiscencia producida por deslices de terreno. No podría explicar la enorme intensidad de la luz observada.

«e) Movimiento del agua en la corteza terrestre. En el Proceedings of Imperial Academy, Volumen VI, Número 10, páginas 401-404, de 1930, se demuestra que el movimiento del agua a través de capas subterráneas conteniendo una cadena de canales capilares pueden, bajo condiciones favorables, producir una enorme diferencia de potencial en la atmósfera superior y excitar una descarga eléctrica luminosa en la misma.

«De acuerdo con Wiedemann, Quincke, Helmholtz y sus estudios de química de superficies, una diferencia de potencial llamada Stromungs-potential se establece entre dos extremos de un tubo capilar por el cual fluye un líquido bajo un gradiente de presión.

«Galli dice que una explicación sencilla fundada en el vapor de agua puede dar la explicación a estos fenómenos: «Este vapor, saliendo con suficiente presión por una fisura puede dar origen a una manifestación eléctrica parecida a la que se obtiene en el laboratorio con la máquina de Armstrong»».

Ignacio Galli, el físico italiano al que hacía referencia Terada, tenía una impresionante colección de trabajos sobre este fenómeno y los relámpagos esféricos o centellas.

Uno de los eventos sísmicos que produjo mayor información, fue el sismo del 26 de noviembre de 1930 en la península de Edo (Izu). Musya recopiló más de 1500 testimonios. Envió 150 cuestionarios a las escuelas preparatorias y universidades pidiendo información sobre cualquier manifestación luminosa que se hubiese visto durante el terremoto. Al mismo tiempo, Terada reconstruyó el evento. Los fenómenos luminosos se observaron en un área vasta: 80 Km al Este, 110 Km al Nordeste y 70 Km al Oeste del epicentro. La distribución de los testimonios se correspondía a la distribución de la población y a la intensidad del sismo en esos lugares. De notable valor fueron los reportes de los guardas forestales de la torre de Sibaura (Tokio); la importancia fundamental estriba en que el fenómeno fue observado antes de la aparición del temblor (a las 4.03 de la mañana). El vigía de la torre notó, unos 6 segundos antes del temblor, una luz en dirección del Sur, que ascendió súbitamente al cielo al momento del sismo. Las observaciones restantes reportaron lámparas y fuegos de una duración increíblemente larga con respecto a las reportadas en otras ocasiones. Diversos testimonios reportaron la presencia de un cielo limpio y sin nubes (lo cual fue comprobado por la carta meteorológica consultada por Terada); al contrario de otros casos en los que se reportó algún banco de nubes. Sin embargo la vastedad de la zona que afecto el temblor puede permitir la coexistencia de varias condiciones meteorológicas. Se reportaron diversos casos de trabes y columnas luminosas observadas en distintos lugares. Algunos informaron de rayos luminosos emergiendo del suelo, tan intensos como los reflectores eléctricos. Se describieron algunas nubes luminosas, algunas de ellas tan brillantes como para permitir observar el más mínimo detalle de objetos a más de 250 metros de distancia.

El día anterior al terremoto, a las 4 p.m., varios pescadores de Siduura, observaron desde el mar un objeto luminoso esférico, que salió de la parte central del monte Wasidu, al oeste del monte Amago, y que se movió hacia el noroeste a gran velocidad.

Se vieron muchas bolas de fuego y nubes luminosas. También se vio una luz en forma de chimenea o parecida a una de las luces que actualmente se utilizan con motivos publicitarios. La mayor parte de los testigos vieron una luminosidad azul pálido o blanca, pero otros reportaron luces rojas y naranjas. Musya escribió al respecto:

«Las observaciones fueron tan abundantes y se hicieron tan cuidadosamente que no se pueden guardar dudas de la realidad del fenómeno y su conexión con el temblor. En la mayoría de ellos, el cielo brillaba como si fuera un relámpago en forma de hoja, y todos los observadores coinciden en afirmar que la duración de uno de esos destellos era mayor a la de los relámpagos normales. En un lugar localizado al Este de la bahía de Tokio, la luz parecía una banda auroral que divergía de un punto del horizonte. Se vieron en diferentes sitios haz y columnas de luz, varios observadores compararon dicho haz a los de un reflector. Otros describieron luces como bolas de fuego. Algunos declararon que las nubes se veían iluminadas o que un destello rojizo iluminaba el cielo. En Hakona-Mati, cerca del epicentro, y al Noroeste, se vio un flash de luz que aparecía un punto y luego en otro, y cuando el terremoto estaba en su clímax, al Suroeste apareció una columna de luz compacta, como si tuviera masa. De acuerdo con la mayoría de los observadores, el color de la luz era azul pálido o blanco, o como el del relámpago, pero otros vieron colores rojos y naranja. Se dijo que en Tokio la luz era tan brillante que los objetos en las habitaciones se podían ver fácilmente. En otro lugar, cerca de 50 kilómetros del epicentro, fue más brillante que la Luna llena»¦

«Las luces se vieron antes y después del terremoto, pero fueron más conspicuas durante el mismo. La dirección en que fueron vistas las luces, en general, apuntaban al epicentro, esto es, hacia la parte Norte de la península de Idu. Sin embargo también se vieron luces en otras direcciones, incluso en dirección del mar»¦

Durante el siguiente año Musya investigó otros fenómenos luminosos reportados en otros cuatro temblores. Los más numerosos fueron los del temblor del Sur de Hyga, en noviembre 2 de 1931. En este temblor se describieron las luces como un haz que salía de un punto en el horizonte, dándole al cielo nocturno una coloración azul.

Varios resplandores, de breve y mediana duración, se debieron a la ruptura de los cables eléctricos. Se dieron reportes en los que se informaba que los cortocircuitos produjeron tal intensidad de luz que se podía observar perfectamente el ambiente circundante. Algunos reportes se debieron, sin duda, a estas fallas eléctricas, pero otros, los que ocurrieron en zonas en donde no había electricidad no tienen esta explicación. La abundante casuística recopilada por Musya y Terada les llevó a concluir que, el proceso físico involucrado, era la triboluminiscencia. Esta teoría fue sometida a pruebas de laboratorio en las que se uso un aparato constituido por un disco metálico, de 5 mm de espesor, al que se le hacía girar rápidamente, mediante un motor eléctrico que trituraba diferentes tipos de rocas colocadas en su interior. Este instrumento simple y rudimentario produjo emisiones de luces en la superficie de contacto entre el disco y las rocas, confirmando la tesis de los investigadores.

Terada T., Hirata M. y Utigusaki T., del Instituto de Investigaciones Físico Químicas del Japón realizaron experimentos de triboluminiscencia para tratar de probar que éste es el origen de los fenómenos luminosos vistos durante los temblores.

Cuando se comprimen los cristales de ciertas sustancias (el azúcar, por ejemplo), se hacen visibles chispas y otros fenómenos luminiscentes. Íntimamente relacionado a esto está la luminiscencia azul tenue que se observa cuando se desenrolla una cinta adhesiva, y la luminiscencia exhibida cuando el bromato de estroncio, y algunas otras sales, se cristalizan en soluciones calientes. En todos estos casos se producen cargas positivas y negativas, por la separación mecánica de las superficies y durante el proceso de cristalización. La emisión de luz ocurre por descarga, tanto directamente por fragmentos moleculares, o vía excitación de la atmósfera en la vecindad de las superficies separadas: el resplandor azul proveniente de las cintas adhesivas es emitido por el N2 del aire que ha sido excitado por las descargas eléctricas.

Los movimientos de tierra producen tensiones en las rocas cristalinas por las cuales el efecto piezoeléctrico genera campos eléctricos de varios miles de volts por metro. Estos campos electromagnéticos se concentran en las áreas de más susceptibilidad, como lo son las líneas de falla. Teóricamente estos campos pueden crear la ionización de un bajo nivel de las moléculas de aire adyacentes a la columna eléctrica que se proyecta a través del terreno.

Otro proceso que podía dar cuenta de la fuerte intensidad del campo eléctrico es el flujo del agua a través de los microscópicos capilares de las rocas, debida a la presión de las ondas sísmicas. Este proceso produce destellos luminosos similares a los relámpagos.

UN FORTEANO CIENTÍFICO

William R. Corliss es la nueva imagen del forteanismo. A diferencia de su antecesor (Fort), Corliss tiene una excelente preparación académica y su estilo no es tan obtuso como el de «la foca del Bronx». Se licenció en física, en 1950, en el Rensselaer Polytechnic Institute, y obtuvo una maestría en ciencias físicas por la Universidad de Colorado, en 1953. Trabajó en la industria espacial desarrollando proyectos de motores de propulsión. Luego se dedicó a escribir temas de divulgación científica que iban de la tecnología espacial, la astronomía, a la geofísica. Escribió para la Nacional Science Foundation, La National Aeronautics and Space Administration y la Energy Research and Development Administration. Pero no fue sino hasta 1974 que encontró su verdadera vocación. Fundó su Soucerbook Project, dedicado a recopilar notas aparecidas en la literatura científica de todo el mundo, en donde se da cuenta de anomalías en los campos de la astronomía, geología, biología, geofísica y arqueología.

En el campo de las luces de los terremotos, Corliss tiene un extenso abanico que mostrar. El siguiente es sólo un ejemplo aparecido en el Scientific American:

«El Dr. Walter Knoche, el director alemán del Servicio Meteorológico Chileno, inició una investigación del curioso fenómeno llamado «relámpago de calor» que frecuentemente se observa a lo largo de las cumbres de los Andes, y ocasionalmente es visible desde mar adentro. (En un caso el Dr. Knoche lo vio desde la Isla de Pascua, a 540 Km de las costas chilenas).

«Las tormentas con relámpagos son raras en Chile, y este hecho puede explicarse por la suposición de que los Andes actúan como gigantescos pararrayos, entre los cuales ocurren, a gran escala, descargas silentes desde las nubes. Las descargas visibles ocurren durante la estación cálida, desde finales de la primavera hasta el otoño, y parecen concentrarse sobre ciertos puntos. De acuerdo con el Dr. Knoche parecen estar confinadas a cierta región de los Andes, la Cordillera Real, en la costa. Vistas desde un punto favorable y cercano a su origen, se puede observar, a veces, un destello constante alrededor de las cumbres de las montañas, con arranques ocasionales, que frecuentemente simulan un haz de luz parecido a los reflectores, que se dirigen hacia el Oeste y se extienden sobre el océano. El color de la luz es amarillo pálido, y raramente rojizo.

«Un hecho sorprendente de estas descargas es que se amplifican durante los terremotos. En el momento del gran terremoto de agosto de 1906, a través del centro de Chile, el cielo entero parecía estar en llamas; nunca antes ni después había estado tan brillante. Los nativos consideran estas luces como reflexiones en el cielo de la lava en los cráteres de los volcanes; pero parece no haber duda de que se trata de descargas eléctricas.

«Se ha planeado hacer mediciones espectroscópicas de este fenómeno singular, y también, si es posible, medir el campo eléctrico de la atmósfera en los altos Andes donde parecen tener su origen. Posiblemente el resultado pueda conectar los «Relámpagos de los Andes» con una forma peculiar de aurora que ha sido observada por Lemstrom sobre las cumbres de las montañas».

OVNIS Y LUCES TELÚRICAS

Al iniciar el siglo pasado, Charles Hoy Fort reportó que meteoros «extraños» aparecían durante los terremotos. Pero no fue sino hasta 1960 que el ufólogo americano John A. Keel, que se asoció la aparición de esas luces con las líneas de falla magnéticas y con la presencia de los terremotos. En 1967 el escritor americano Vincent H. Gaddis se ocupó del tema y escribió el primer libro dedicado por entero a las luces misteriosas: Mysterious fires and lights. El libro es sensacional, y mucho de ello se debe a las excelentes dotes de escritor de Gaddis, un asiduo colaborador de la revista Fate. Este escritor es, también, el primero que se ocupo y bautizó al famoso Triángulo de las Bermudas, y el mismo que difundió varios casos de «desapariciones misteriosas» como el de David Lang u Oliver Larch (casos espurios de los que nos ocupamos en otro lugar). El libro que nos ocupa va de la presentación de casos de foo fighters a los critters (los OVNIs como organismos vivientes), centellas, anomalías en la recepción de radar, fuegos fatuos, fuegos de San Elmo, centellas y otros fenómenos relacionados. Su habilidad con la pluma no le exime de haber generado mucho de los mitos actuales de los cultores de los fenómenos paranormales.

Pasó tan solo un año, y poco antes de aquel famoso mayo francés del 68, y sin conocer la obra de Gaddis, (aunque la de Keel, probablemente, fue el disparador para dar una vuelta de giro a la fallida hipótesis de Aime Michel y las ortotenias, y presentarla bajo un sustento geofísico), el ufólogo francés Ferdinand Lagarde, tras un análisis concienzudo de 86 casos de presuntos aterrizajes de OVNIs en territorio francés, durante la oleada de 1954, determinó que el 37% de ellos se situaban sobre fallas geológicas. Con esos datos trató de demostrar una relación entre los avistamientos de OVNI y las fallas geológicas. Según él había una correlación notable entre los aterrizajes OVNI y la vecindad de fallas geológicas. Su hipótesis fue que los fenómenos piezoeléctricos generaban fenómenos electromagnéticos.

El ingeniero español Félix Ares de Blas halló una correlación parecida entre OVNIs y zonas geomagnéticas. Un trabajo similar fue el que realizó el capitán Tomás Ramírez y Barbero, de Zamora, y posteriormente, David G. López y Félix Ares de Blas publicaron un artículo en donde apuntaban:

«Queremos mencionar aquí la circunstancia, ya apuntada por algunos investigadores, de que el número de observaciones OVNI se incrementa en las horas anteriores y posteriores a los movimientos sísmicos. En España tuvimos ocasión de comprobarlo, aunque de forma no demasiado significativa, con motivo del sismo del 28 de febrero de 1969, que afectó primordialmente a la zona sur de la Península».

Sus resultados encontraron eco en

«»¦ la Embajada de Japón, mediante la publicación de una noticia donde se decía que científicos de aquel país han comprobado que durante las horas anteriores a cualquier movimiento sísmico, se han detectado alteraciones en el campo magnético de la zona».

Tomás Ramírez y Barberó encontró que el 34.4% de las observaciones de OVNIs se producen sobre líneas de falla. Más tarde, la mancuerna Ares-López obtuvo un coeficiente de correlación de Pearson de -0.069 para el total de sismos versus OVNIs, comprendidos entre los años 1950 y 1977 (inclusive). Estos autores anotan:

«Los resultados obtenidos en este capítulo parecen estar en contradicción. Por un lado se demuestra la inexistencia de correlación entre las distribuciones que a lo largo del tiempo han seguido las observaciones OVNI y la actividad sísmica. Por otro, en cambio, existen leves indicios de que las líneas de falla y zonas de mayor intensidad sísmica son las que detectan un porcentaje de casuística OVNI superior al esperable por azar.

«No obstante, el científico soviético Iván Zayanchkovski, en un artículo publicado recientemente por la revista Sputnik, escribe el siguiente párrafo:

«Â«Se ha descubierto que durante los temblores de tierra aumentan las corrientes eléctricas, que surgen de las entrañas de la tierra a causa de la deformación de las rocas. Con la descarga de poderosos campos eléctricos, corrientes de electrones se precipitan desde las profundidades del subsuelo hasta la atmósfera; en el cielo aparecen luminiscencias y resplandores. Así sucedió en la madrugada del 26 de abril de 1966 en Tashkent: varios segundos antes de la sacudida se pudo observar un gran resplandor sobre la ciudad.

«Â«Por consiguiente, al observar los cambios de concentración de electrones en la atmósfera se pueden predecir los terremotos unas horas antes de producirse»».

Efectivamente, los servicios sismológicos soviéticos declararon, según la Revue France-URSS, No. 60:

«Algunos instantes antes del terremoto que sufrió tan dolorosamente Tashkent en 1966, el cielo se iluminó como si ardiera por encima de la ciudad.

«Esta visión de Apocalipsis ha sido explicada: las deformaciones que sufren las rocas son acompañadas de emisiones de electrones que recalientan las capas subterráneas, aceleran su ruptura y llega a la atmósfera provocando esa iluminación».

Ignacio Darnaude, en un estudio de la casuística andaluza, señala la observación de objetos no identificados en diversas localidades, coincidiendo con el terremoto de intensidad IX registrado en la noche del 28 de febrero de 1969.

Parece ser que en 1975, Andrew Cork y Paul Devereux publicaron las investigaciones que habían hecho en Leicestershire, relacionando múltiples anomalías meteorológicas con la aparición de OVNIs. No he tenido acceso a ese trabajo.

Un año antes, William R. Corliss fundó su Sourcebook Project y en 1976 publicaría su primer libro y al año siguiente iniciaría su Science Frontiers. En varias de estas obras menciona fenómenos luminosos naturales, que podrían ser confundidos con OVNIs.

Hilary Evans publicó, en julio de 1982 en su revista de ufología The Probe Report, un largo artículo en el que proponía una nueva etiqueta para la serie de fenómenos que estamos estudiando: BOL (Balls of Lights). Decía que eran entidades naturales e inteligentes «proteiformes» (con la propiedad de cambiar de forma) que en general no siempre viven en el aire y que son originarios de nuestra atmósfera. Se les describe como bolas de luz. Para Evans eran la «verdadera llave del enigma de los OVNIs», y por ello animó el «Project Bolide», en donde la palabra era en realidad el acrónimo «Ball of Light Internacional Data Exchange», un grupo informal de apasionados que se dedicó a recopilar bibliografía de procedencia dispersa y de difícil acceso. La coordinación del grupo estuvo a cargo del ufólogo del BUFORA Robert Moore

Henk Hinfellar, de Nueva Zelanda; Paul Norman, de Melbourne (Australia) y Stan Seers, director del Departamento de Investigaciones de OVNIs en Brisbane (Australia), basándose en observaciones de OVNIs y en ortotenias, llegaron a determinar la correspondencia de estos avistamientos con las líneas de fractura, o sea, las zonas ubicadas en los cinturones de fuego que bordean la costa Oeste de América, la costa Este de África, el Mediterráneo, el Norte de la India y la costa e islas del Japón y de Oceanía, que forman el famoso cinturón de fuego del Pacífico. Sus resultados fueron expuestos en un capítulo de UFOs around the World.

Las luces de los terremotos han sido reportadas con tanta frecuencia que el doctor John S. Derr, del Servicio Geológico de los Estados Unidos (US Geological Survey), ha dicho que su existencia no puede seguir siendo ignorada. Derr ha investigado la posible correlación entre los fenómenos luminosos vistos en la reservación india de Yakima, Washington y las líneas de falla. En los años setenta hubo una oleada de avistamientos OVNI en la reservación, bajo la forma de luz ígnea, efectos de resplandor y destellos y curiosas nubes luminiscentes. También eran frecuentes los ruidos sordos bajo tierra. Las luces fueron bien observadas por los testigos, y también se tomaron fotografías. Los fenómenos tendían a congregarse alrededor de Toppenish Ridge, cordillera de múltiples fallas que cruza serpenteando la reservación. Curiosamente, la reservación se encuentra en el flanco oriental de las montañas Cascada, cerca de donde Kenneth Arnold vio sus famosos platillos voladores en 1947.

Cuenta una leyenda de los indios Yakima que hace mucho tiempo, cuando murió un chaman o médico brujo que tenía los ojos rojos, un objeto del cielo bajó a la tierra y se llevó los restos del brujo. Esos objetos luminosos se continúan viendo hasta nuestros días en la reservación de más de medio millón de hectáreas.

Muchos de los informes modernos provienen de vigías forestales contra incendio. Sus reportes hacen referencia a luces nocturnas rojo anaranjadas o blancas, que se comportan de modo errático. Joseph Allen Hynek recabó fondos para poner al ingeniero David Akers al mando de un proyecto de investigación. Haciendo uso de cámaras de foto fija, una de ellas con una rejilla para analizar la longitud de onda de la luz, y otras de cine, Akers se preparó a partir hacia Yakima. Contaba, además con un magnetómetro, contador Geiger y aparatos para medir radiaciones infrarrojas y ultrasonidos. Su expedición comenzó el 19 de agosto de 1972 y duró dos semanas. Durante ese tiempo logró tomar varias fotografías pero no se pudo llegar a conclusión alguna.

Desde comienzos de 1950, la Oficina Nacional de Información Geográfica ha confeccionado mapas de todas las zonas de fallas magnéticas de los Estados Unidos. Según el ufólogo Eric Norman, existe una importante concentración de informes sobre OVNIs en aquellas áreas.

Otra región que estudiaron Derr y Persinger fue Uintah Basin, en el Nordeste de Utah. También esta zona experimentó una oleada OVNI en los años setenta. Una vez más se vieron bolas, huevos de luz y globos que parecían tener un lustre metálico. Los investigadores encontraron indicios convincentes de la veracidad de la hipótesis relativa a la tensión tectónica.

Ya el mismo doctor Edward U. Condon había encargado al físico Martin D. Altschuler que investigara una posible relación entre estas luces y el fenómeno OVNI. Sus resultados aparecen en la Sección 12 y 13 del Informe Condon. Altschuler escribió:

«La mañana del 14 de noviembre de 1963 comenzaron las erupciones volcánicas a unos 23 kilómetros de las costas de Islandia, en donde la profundidad del mar es de 130 metros. En tan sólo 10 días de creo una isla de 1 kilómetro de longitud y de 100 metros sobre el nivel del mar. Había nacido la isla de Surtsey.

«Las películas del fenómeno muestran nubes que se elevan verticalmente a una velocidad de 12 m/seg hasta una altura de 9 Km. Las nubes que se grabaron el 1 de diciembre mostraban luces intensas y continuas, presumiblemente debidas a la fricción entre las partículas de polvo y a los efectos eléctricos del azufre.

«Las mediciones del campo eléctrico que se hicieron desde aviones mostraban valores superiores a los 11,000 volt/m».

Algunos de estos fenómenos luminosos eran parecidos a los mostrados en el Popocatépetl en sus días de mayor actividad, y que fueron presentados como OVNIs por el ufólogo de la televisión de todos conocido.

Ilustración de principios del siglo pasado que muestra el curioso fenómeno de «Las luces de los Andes».

La «foca del Bronx», Charles Hoy Fort, frente al inmenso tablero de damas de su invención.

John A Keel fue el primer ufólogo que relacionó las luces telúricas con los OVNIs.

Vincent Gaddis.

El primer libro de OVNIs que trató el tema de las luces telúricas: Mysterious fires and lights, de Vincent Gaddis.

William R. Corliss.

El primer libro de William R Corliss sobre curiosidades y anomalías naturales.

Aime Michel sería la inspiración para Ferdinad Lagarde, quien relacionó a los Misteriosos Objetos Celestes con las líneas de falla: las nuevas ortotenias.

Los cuatro ufólogos españoles que se interesaron en las luces telúricas, de izquierda a derecha: José Tomás Ramírez y Barberó, Ignacio Darnaude Rojas Marcos, David G. López y Félix Ares de Blas.

Paul Devereux es uno de los principales adalides de la hipótesis de las luces terrenas.

Uno de los investigadores de fenómenos forteanos más activo en nuestros días, el ingles Hilary Evans, fundador del Project Bolide.

Toppenish Ridge, a la izquierda, en la reservación india de Yakima, lugar de múltiples avistamientos OVNI en la década de los setenta. A la derecha, una de las fotos obtenidas por Ackers.

Más ejemplos de las luces de Yakima.

Arnold y sus nueve discos. ¿Fueron los platillos volantes de Arnold originados por luces sísmicas? Lo más probable es que no y que sólo exista una curiosa coincidencia entre ese avistamiento y el hecho de que esa región sea una zona de alta incidencia de luces sísmicas, debido a que se encuentra en una falla tectónica.

El ingeniero David Ackers realizó estudios en campo de las luces en la reservación de Yakima, apoyado económicamente por el doctor Hynek

Edward Condon ya pensaba, en la década de los sesenta, gracias a las investigaciones del doctor Martin D. Altschuler, que muchos de los reportes sobre supuestos OVNIs correspondían a luces telúricas o de origen natural. Continuará…

Vea también los siguientes enlaces
https://marcianitosverdes.haaan.com/2006/05/las-luces-de-los-terremotos-primera-parte/
https://marcianitosverdes.haaan.com/2006/05/las-luces-de-los-terremotos-y-2/
https://marcianitosverdes.haaan.com/2006/05/las-luces-de-los-terremotos-y-3/
https://marcianitosverdes.haaan.com/2006/05/las-luces-de-los-terremotos-y-4/
https://marcianitosverdes.haaan.com/2006/06/las-luces-de-los-terremotos-final/
https://marcianitosverdes.haaan.com/2007/05/luces-de-los-terremotos/
https://marcianitosverdes.haaan.com/2007/08/luces-de-los-terremotos-en-per/
https://marcianitosverdes.haaan.com/2007/08/el-terremoto-de-per-y-las-luces-ssmicas/
https://marcianitosverdes.haaan.com/2007/08/otro-video-de-las-luces-de-los-terremotos-en-per/
https://marcianitosverdes.haaan.com/2007/08/transformadores-o-luces-de-los-terremotos/
https://marcianitosverdes.haaan.com/2007/08/luces-rojas-en-el-terremoto-de-per/
https://marcianitosverdes.haaan.com/2007/08/luces-elctricas-en-el-terremoto-de-per/

¿El regreso del hombre mono?

La policía atrapa la paloma fantasma

PTI

SURI: Una paloma con un minúsculo cráneo de plástico colgado alrededor de su cuello, con foquitos rojos que brillan intensamente en las cuencas oculares, está en custodia de la policía después de que se generó pánico sobre un fantasma que ha estado atacando a la gente de cinco aldeas en el distrito occidental de Birbhum de Bengala, y que dejaba marcas de rasguños.

Suri DSP, D&T, Amitabha Maity presentó el pájaro ante los reporteros el sábado. Los foquitos rojos se encendían por medio de un microcircuito operado con pilas. Maity dijo, «puede ser un caso de cómo los pájaros y los animales pueden ser utilizados para crear pánico».

Se le preguntó cuál es el motivo para espantar a la gente, lo que ha dejado a residentes de cinco aldeas muertos de pánico por las noches, el DSP dijo «el único motivo parece ser crear pánico». Él, sin embargo, no podría explicar cómo fue que la gente sufrió rasguños en los «ataques».

Una persona de la aldea de Kalipur fue ingresada al hospital de Suri, hace tres semanas, después de ser atacado y rasguñado.

La gente enojada de Dubrajpur había instalado una barricada, hace dos semanas, después de que fue rasguñado un muchacho.

Centenares de personas se arremolinaron en la comisaría de policía aquí el sábado, para mirar al «fantasma» después de que la paloma fuera atrapada en la aldea de Kaita en Dubrajpur.

Un aldeano informó a la policía lo cuál condujo al arresto del pájaro. Después de recibir reportes desde varias aldeas sobre los ataques durante casi un mes, la policía había aumentado las patrullas en la noche y también había formado un equipo especial para llegar al fondo del misterio.

La aldea Pradhans también había estado en guardia, dijo el policía. La policía también se acercó al Departamento Forestal para dejar trampas. El director de conservación forestal, Rahul Sinha, durante una visita aquí el viernes fue entrevistado por la policía.

Tan grande era el miedo por el «fantasma», que un búho adulto fue víctima de los aldeanos asustados en Dubrajpur, después de que bajara sobre una casa.

La policía dijo que la gente había descrito el «fantasma» tanto como un hombre, como un mono.

http://www.newindpress.com/NewsItems.asp?ID=IEP20060528030758&Page=P&Title=Nation&Topic=0

http://www.ibnlive.com/news/wingedghost-terrorises-wb-village/11617-3.html

La historia nos recuerda al ataque que sufrieron los residentes de Nueva Delhi, a mediados del 2001, por parte de un «hombre mono». El «monstruo» fue descrito como un mono portando un minúsculo casco. La «bestia» también atacaba dejando rasguños en el cuerpo de sus víctimas.

La pregunta es obligada ¿se trata del mismo bromista colombófilo? Desafortunadamente la noticia nada menciona del entrenador y dueño de la paloma, pero sería interesante que se indagara en éste sentido.

Las luces de los terremotos (Primera parte)

 

LUCES DE LOS TERREMOTOS

«Los Estremecimientos de nuestro planeta van acompañados de fenómenos relacionados con la electricidad atmosférica. Cuando tiene lugar un fuerte terremoto, éste, muy a menudo, va acompañado de tormentas bajo el cielo despejado. Con frecuencia, se observa una luminiscencia enigmática con estallido retardado de relámpagos. Se ha observado también esferas claras y largas franjas similares a una aurora boreal, aunque no ha habido tormenta en aquel momento».

Vladímir Mézentsev

Helmut Tributsch, citando a H. Bonnet, menciona que tal vez la primera referencia a las luces sísmicas es la siguiente que proviene del Antiguo Egipto:

«Abriendo grietas en el monte y produciendo lluvia y luces, un terremoto acompañó el renacimiento del rey».

Cayo Plinio Secundo, el Viejo (23 a 79 d.C.), historiador romano, escribió en su Naturae Historiarum, sobre un evento luminoso durante el terremoto de Modena, en el 89 a.C.:

«Como se puede leer en los libros sagrados de los etruscos, hace tiempo, bajo el consulado de Marzio e Sesto Giulio, durante un terremoto en la zona modense, se verificó un avistamiento muy singular. En efecto, dos montañas se confrontaron, descuartizándose y retrocediendo con gran fragor, mientras a plena luz del día, a la vista de muchos caballeros romanos, de sus sirvientes y de otros viandantes que se encontraban sobre la vía Emilia, en medio de ese lugar se vieron en el cielo flamas y humo. Lo que quedaba a su paso fue destruido: todas las casas y murieron muchos animales que ahí se encontraban».

También menciona unos Clipei Ardentes o escudos llameantes que se vieron en el cielo nocturno durante el terremoto general que derribó el enorme Coloso de Rodas, una de las siete maravillas del mundo antiguo, en el año 224 a.C.

Una de las primeras descripciones del fenómeno fue dada por el estoico Publius Cornelius Tacitus (Tacito), quien en su Annalium describió que en el terremoto de la ciudad de Achaian, en 373 a.C. fueron vistas unas luces. Cita el terremoto del 17 d.C. que destruyó 13 ciudades del Asia Menor, bajo el consulado de Cecilio y Pomponio. Se vieron flamas inmensas al momento del terremoto.

Las crónicas japonesas describen efectos luminosos durante los terremotos. En el año 869 d.C. en Mutu, al Norte del Japón, durante un terremoto se vio recorrer el cielo una luz de intensidad fluctuante. En el terremoto de Kamamura del 1257 se observaron flamas azules, que emergían de las fisuras abiertas en el terreno y luego se arrastraban por el suelo. Se mencionan objetos luminosos voladores en el terremoto de Yedo (Tokio), durante el invierno de 1672. Se vio volar una bola de fuego, parecida a una linterna de papel, en el cielo, hacia el Este. En el sismo de Tosa del 1689 se vieron numerosas bolas de fuego, en forma de ruedas, volando en todas direcciones.

En una crónica de Antonio Ghiselli se dice que la noche del 20 al 21 de julio de 1399, Bologna fue presa de un terremoto que produjo grandes daños. En ese mismo momento se vio «una trabe de luz ardiente».

En Ferrara, las noche del 16 y 18 de noviembre de 1570 se registraron varios sismos. El segundo fue muy intenso. Se mencionan ruidos subterráneos y globos en el cielo, elevación de las aguas del Po, y emisión de un humo denso.

Más enigmático fue lo ocurrido la segunda mitad de febrero del 1600 en Arequipa, Perú. En palabras de Ignazio Galli:

«El 18 de febrero de 1600 comenzó una violenta erupción del volcán Hayna-Putina, a 70 kilómetros de Arequipa. Un día después, el padre Martino Del Río se enteró por una carta de los misioneros que presenciaron el hecho, que se vieron muchos globos de fuego en torno a la ciudad, uno de los cuales, muy grande, saltó de la iglesia del monasterio y se fue por su calle, en donde desapareció esparciendo una luz similar a aquella del candil de la entrada, mientras una fuerte temblor abatió muchas casas».

La tarde del 11 de febrero de 1692, los campesinos que vivían a las afueras de Alari, Sicilia, creyeron que la villa se había incendiado. Todas las casas parecían envueltas en llamas. El fenómeno duró poco más de un cuarto de hora. Los campesinos que se acercaron a auxiliar, encontraron que todo era una especie de ilusión. Horas después ocurrió el terremoto. Tres meses después, el 15 de mayo, dos horas antes de la puesta del sol, la atmósfera se aclaró de manera extraordinaria, y luego el cielo pareció estallar en llamas, sin relámpagos ni truenos. En Siracusa aparecieron dos arcos de colores extremadamente brillantes, y un tercero con sus extremidades invertidas, sin que en el cielo existiera ni una sola nube.
El 17 de junio del mismo año, le toco el turno a Jamaica. Se escucharon estruendos pavorosos en Port Royal y se vieron luces de formas indefinidas.
En el caso del Gran Terremoto de Genroku, del 31 de diciembre de 1730 en Tokaido, se reportaron «cuerpos» luminosos y «aire» luminoso durante las noches que precedieron al sismo. Después, se observo una especie de hoja o de lámina con una luminosidad parecida a la de los relámpagos, ¡durante 20 días¡, aún cuando no había ninguna nube en el cielo.
El terremoto de Londres, en 1749, también exhibió fuertes síntomas de una acción eléctrica. El Dr. Stephen Hales escuchó fuertes ruidos que terminaban en explosiones, que fueron atribuidas al escape del fluido de la torre de la iglesia de St. Martin»™s-in-the-Fields. Casi un siglo después, en 1842, el cielo de Cowrie, Perthshire se iluminó de tal manera, antes de la madrugada, que los pájaros de los árboles eran fáciles de distinguir.

El 1 de noviembre de 1755 la ciudad de Lisboa casi desapareció del mapa a consecuencia de los temblores y maremotos que la azotaron. Murieron miles de personas. El fenómeno atrajo la atención de estudiosos de la talla de Emmanuel Kant (1724-1804), quien con el tiempo publicaría sus resultados en donde menciona que, mientras Lisboa era arrasada, el agua de los manantiales, lagos y ríos de lugares a gran distancia de la ciudad portuguesa (Suiza, Suecia, Noruega) fueron sacudidas de una forma más intensa que la que produce una tempestad, a pesar de que el día era calmo y tranquilo. El agua del lago Neuchatel y la del Meiningen rebasaron sus niveles naturales. En Gemenos, Provenza, el agua de un manantial se transformó en lodo y luego se tiño de rojo.

Kant también encontró reportes de fenómenos luminosos que se observaron poco antes del terremoto. En Taum, Irlanda, apareció un fenómeno luminoso, de forma de bandera, sobre el mar, del cual se propagó una luz deslumbrante, seguida de un movimiento sísmico. Kant escribió:

«No puedo dejar de mencionar el hecho de que en aquel tremendo Día de Todos los Santos, en Augsburg, se dejó caer la calamidad y las agujas magnéticas se agitaron desordenadamente. Ya Boyle se refirió a que en, Nápoles, después de un terremoto, se verificó un hecho análogo. Conocemos poco de la naturaleza oculta del magnetismo para poder explicar el origen de tal fenómeno».

Se dijo que durante la noche que precedió al terremoto de Kyoto, en agosto de 1830, se vio un fenómeno luminoso en todo el cielo; a veces, la iluminación que se emitía hacia el suelo era comparable en brillo al de un día soleado. Uno de los reportes del Sismo de Shinano de 1847 dice:
«Bajo el cielo oscuro, apareció una nube ardiente en dirección del monte Izuna. Se le vio hacer giros y luego desaparecer. Inmediatamente después se escuchó un tremendo fragor, seguido por varios temblores».
El reverendo J. H. Murria mencionó fenómenos eléctricos en la costa Este de Sur América, en el mismo momento del terremoto de 1868.

Exactamente a las 21:10 del 25 de diciembre de 1884 un terremoto azotó Andalucía, en España. En Rubite y Vélez de Benaudalla se vieron «auroras boreales». En Granada el cielo se tiño de rojo y duró así durante mucho tiempo. En Niguelas, al mismo tiempo del terremoto, se vieron luces rojas en el campanario y en la alcaldía. En Murchas, Periana y Zafarraya se vieron nubes luminosas que, incluso, se dividieron dirigiéndose al este y al oeste, siguiendo la propagación del terremoto. En el terreno se formaron fracturas de las que salieron columnas de fuego, luces fosforescentes y pequeñas bolas de fuego.

La comisión que se instauró para investigar el fenómeno publicó un estudio titulado: Terremotos de Andalucía. Informe de la Comisión nombrada para su estudio. Madrid 1885″, en la que se puede leer:

«Respecto a la aparición de flamas o fuegos fatuos, que son cosa frecuente en los grandes terremotos, las ruedas luminosas, las columnas de gas y vapor, la iluminación del espacio, no ya como globos, sino como auroras boreales o luces fosforescentes, tienen una explicación sencilla cuando se acepta la teoría geodinámica, fundada principalmente en el vapor de agua. Esto es, en efecto, si el agua sale a la presión suficiente por las fisuras, puede dar origen a una manifestación eléctrica, como se obtiene artificialmente en el laboratorio de física con la máquina de Armstrong»¦ Respecto a los otros fenómenos, debidos a la electricidad atmosférica, se comprende bien que, si ésta se acumula, puede presentar todos o casi todos: por esta razón, no sólo se vieron luces eléctricas, de las cuales ya habíamos hablado a propósito del gas comprimido, además se observaron auroras boreales en Rubite y Vélez de Benaudalla. Y para que no quedara ningún vacío en este cuadro de fenómenos, en Orgiva se observó la aparición de un bólido o globo de fuego: este es el único fenómeno que no se explica con la teoría del vapor de agua o de gas, que circulando por la tierra producen una gran presión, cerca de su «˜salida»™».

El naturalista De Montessus De Ballore menciona luces vistas en el cielo durante el terremoto de Valparaíso el 16 de agosto de 1916.

La tarde del 23 de julio de 1885, a las ocho en punto, J. B. A. Watt se dirigía a su casa en Midlothian, England, cuando a unos 10 metros de él, sobre la calle apareció, repentinamente un objeto luminoso que se dirigió hacia él haciendo movimientos sinuosos, a una velocidad de aproximadamente 50 kilómetros por hora. En cierto momento el objeto pareció envolver a Watt y sus acompañantes.
«Mi mano izquierda experimentó la misma sensación que si hubiera recibido una descarga eléctrica de una batería galvánica. Tres minutos después escuchamos un tronido, pero, aunque esperamos algún tiempo, no vimos ningún relámpago».
Uno de sus acompañantes, el jardinero, describió así lo que vio:
«Pensé que era una nube de polvo centellando sobre la avenida, y antes de que pudiera pensar en cómo era posible que eso ocurriera si no había trazas de viento, vi que el fenómeno cubrió a mis tres acompañantes dentro de una luz brillante».
Otro de los testigos dijo que vio lo que parecía ser una nube luminosa corriendo por la avenida en un movimiento ondulante. Cuando alcanzó a los testigos, rozando el suelo, atravesó el cuerpo de dos de ellos y emitió una especie de destello en sus hombros. Todo ocurrió en dos o tres segundos. El día había sido muy caluroso y había alcanzado los 27°C a la sombra.
Posteriormente el jardinero proporcionó otros datos. La nube, inicialmente, parecía tener una altura de 1.20 metros, y conforme se iba acercando a los testigos, fue creciendo.
En el terremoto de Kwanto del 1 de septiembre de 1923, un miembro del equipo del Observatorio Central Meteorológico vio una especie de bola de fuego estacionada en el cielo.

Varios de estos reportes provienen de los anales del Dai Nihon Jishin Shiryo (Comité Imperial para la Investigación de los Terremotos), que fue publicado por vez primera en 1904. De estos testimonios Kinkiti Musya (Instituto de Investigación de los Terremotos de la Universidad de Tokio) extrapoló que todos los temblores estaban asociados a fenómenos luminosos, aunque en ocasiones no se les reportara debido a la ausencia de testigos. Torahiko Terada (1878-1935), de la misma Universidad, facultad y grupo de investigación, comparó la casuística nipona con la del resto del mundo, concluyendo que en cualquier parte del mundo, durante los terremotos, se manifiestan fenómenos luminosos. Terada afirmó que ese era un fenómeno recurrente.

En la parte central de Chipre se vio un enorme y brillante destello, la mañana del 20 de enero de 1941. Nicosia Hodja, quien estaba en un minarete en su rezo matutino, pudo observar el fenómeno. Dijo que primero escucho un gran ruido y creyó que se trataba del impacto de un proyectil y que, incluso, le hizo pensar en la posible caída del minarete. Posteriormente vio un relámpago globular de color rojo, moviéndose lentamente hacia el Este. El ruido desapareció lentamente.

Una gran emisión de luz de terremotos hizo la noche día sobre la República de Malgasy, en la costa sureste de África, el 30 de julio de 1977. Bolas de fuego brillantes cruzaron los aires, como grandes relámpagos esféricos. Media hora más tarde, un terremoto sacudió la isla. Se habían visto unas señales similares en los cielos de China, en el año anterior. Los geólogos mexicanos que visitaban la China, dijeron que el cielo nocturno «brillaba como de día», poco antes del terremoto de Tangshán.

SIGNOS QUE PRECEDEN A LOS TERREMOTOS

Recientemente los científicos han descubierto que cantidades excesivas de gas radiactivo radón, son vertidas en la atmósfera antes de algunos terremotos. El gas se produce dentro de las rocas por el decaimiento radiactivo del radio. Las grietas que forman la presión antes de un temblor, hacen que grandes cantidades de radón se escapen a la atmósfera, y así ayudan a indicar la inminencia de los terremotos.

El campo magnético de la Tierra también puede predecir la proximidad de un gran temblor. La primera vez que se descubrió esto fue en el siglo pasado. El campo se puso muy débil antes del severo terremoto de Tokio de 1923, y luego recobró su intensidad normal.

El comportamiento anómalo de los animales antes de los terremotos no es una leyenda popular que no tenga fundamento.

Los animales pueden comportarse de una manera extraña antes de un temblor. Hay muchas historias sobre perros y gatos que condujeron a sus dueños fuera de la casa sólo unos minutos antes de ocurrir un terremoto que destruyó la misma. Si estas historias son ciertas, los animales deben haber sentido el rumor de muy baja frecuencia (inaudible para los humanos) que precede los terremoto, o pudieron haber olido el gas radón que se vierte a la atmósfera por las vibraciones, y salieron afuera por instinto, para evitar ser aplastados con la caída de la casa. Es posible que los perros y los gatos puedan oír el grave rumor de las rocas que chocan entre sí debajo de la tierra, y las serpientes quizás puedan sentir las débiles vibraciones en su cuerpo, a tiempo para salir huyendo y evitar así ser enterradas vivas en sus madrigueras, al desmoronarse estas.

En la revista inglesa Nature se planteo la posibilidad de que la electricidad que hay en la atmósfera puede tener algo que ver con esto. En un artículo aparecido en dicha revista se sugirió que los terremotos podrían cambiar, de alguna manera, las cargas eléctricas de la atmósfera (los experimentadores del siglo XIX notaron más electricidad en la atmósfera antes y durante los terremotos) que podría inquietar a los animales.

La electricidad atmosférica podría, también, explicar uno de los fenómenos más raros relacionado con los temblores, la Luz de los Terremotos o Sismoluminiscencia.

Esta luz es un raro resplandor que se ve, a veces, en el cielo antes o durante los temblores. La luz puede ser de cualquier color. Puede aparecer en forma de un resplandor suave y difuso, como el de la aurora, o puede ser tan refulgente como los fuegos artificiales.

El experto en temblores Dr. Valentín Ulomov, de la entonces URSS, creía que estas luces eran algo parecido a los relámpagos. Sospechaba que la tierra emite, de alguna manera, electrones antes de un terremoto. Estos electrones, al interactuar con las partículas del aire, hacen resplandecer el cielo.

Esta teoría se relaciona estrechamente con las viejas leyendas sobre los «tiempos de terremoto». Las nieblas y ciertas nubes raras fueron en su tiempo tomadas como señales de advertencia de temblores.

Las partículas cargadas de electricidad estática en el aire, pueden crear nubes y neblinas donde el aire tenga una humedad menor del 100%. Así que, si las nubes y las nieblas aparecen en una atmósfera relativamente seca, cerca de una falla activa, quizás esté en camino un terremoto.

Estas nubes han dado origen a muchos reportes de OVNIs en California. En la década de los ochenta se les utilizó para predecir terremotos.

Lu Dajiong, presidente de la Sociedad de Nubes Terremoteras (sic), de Pekín, afirma que los terremotos se pueden predecir si se estudia con detenimiento las nubes. La sociedad cuenta con 100 miembros y fue capaz de predecir el terremoto del 7 de noviembre de 1983 en Shandong (Este de China), de 5.9 en la escala de Richter.

Ocurren otros fenómenos durante los temblores: la presión exprime el agua de la roca y eleva así los niveles freáticos cercanos; la roca se vuelve más resistente a las corrientes eléctricas; y se libera mayor cantidad del gas radón.

Poco antes del sismo, el agua se filtra de nuevo en las grietas minúsculas y todo vuelve a la normalidad. El regreso del agua también debilita la roca dilatada a lo largo de la falla y produce multitud de pequeños temblores previos, que rápidamente crecen. Esos temblores cesan de repente. La tierra adopta una siniestra quietud hasta que, de repente, la falla se divide en una ruptura gigantesca, los lados vibran convulsivamente, pasan al lado o por encima el uno del otro y sacuden la tierra. Suele haber choques posteriores, casi tan violentos como los primeros.

Los chinos, que han registrado esos fenómenos desde hace 3,000 años, sostienen que poco antes de un terremoto grande las ratas huyen de los edificios y los caballos y los cerdos corren espantados de un lado al otro. Creen que los animales sienten las vibraciones, oyen sonidos, huelen el radón y sienten cambios en los campos eléctricos, que los humanos no pueden percibir.

Los chinos lograron su mayor triunfo en el arte de predecir terremotos en 1975. Diez mil sismólogos profesionales, ayudados por unos 100,000 aficionados, estuvieron alertas a los síntomas de temblores en 5,000 lugares distintos. En los alrededores de la ciudad de Haicheng, en Manchuria, notaron ligeros cambios en la inclinación del suelo y en la conductividad eléctrica, variaciones en los niveles de radón en el agua de pozo y un rápido aumento de sacudidas ligeras. Cuando el 4 de febrero esos temblores terminaron repentinamente, las autoridades ordenaron la evacuación de la ciudad. Cinco horas y media después, Haicheng fue estremecida por un sismo que destruyó, o causó grandes daños al 90% de las estructuras de la ciudad.

Esta proeza indujo a algunos geólogos a anunciar, ufanos, que la predicción de los terremotos era ya un hecho. Pero su optimismo resultó prematuro. Dieciocho meses después ocurrió, sin advertencia, el gran terremoto de Tangshán, con un saldo de 750,000 muertos. De 31 predicciones hechas en China en un periodo de dos años, 18 fueron exactas, 7 dudosas y 6 erróneas por completo.

Posterior a los temblores, también se pueden producir fenómenos todavía más raros. El 6 de mayo de 1976 hubo un temblor en Friuli, Italia, en el que perecieron unas mil personas. Posteriormente varios pescadores afirmaron que bancos de peces morían en los ríos de la región y que sus cuerpos se descomponían con extraordinaria rapidez. Otros testimonios señalan que las hojas de los árboles se cubrían por la mañana de una sustancia viscosa que desaparecía misteriosamente durante la jornada.

En Japón se ha reportado la aparición de una misteriosa niebla que anuncia el arribo de un terremoto. Se observa a lo largo de los flancos de las montañas, llega desde el mar o puede oscurecer e impedir las labores en el interior de las minas. Los japoneses la conocen con el nombre de «Chiki», que traducido literalmente significa «el aire de la tierra». El químico italiano Helmut Tributsch ha estudiado el fenómeno. Desde el punto de vista meteorológico la niebla es el resultado de la condensación del vapor de agua en los estratos inferiores de la atmósfera terrestre. Estas minúsculas gotitas de agua en suspensión se forman cuando están presentes núcleos de condensación en torno a los que se coagulan las moléculas de vapor; ocurre si la temperatura del aire asciende a un valor específico, bajo el punto de rocío. El aire enfriándose no determina sólo un abatimiento de su propia temperatura, sino una contracción en el volumen ocupado por su propia masa, esto produce un aumento de la cantidad de vapor por unidad de volumen alcanzando contracciones a valores próximos al 100% de humedad, el aire se vuelve saturado e inicia el proceso de condensación, por lo tanto el punto de rocío no es un valor constante, sino que varía en función de la cantidad de vapor presente.

Tributsch observó que las cargas electrostáticas permiten la condensación del vapor de agua, aunque no se haya alcanzado la saturación. Es decir, este proceso, en conjunto con el posible aumento de los iones presentes en la baja atmósfera puede producir la particular neblina que antecede a los eventos sísmicos.

LAS LUCCI TELLURICHE Y GALLI

Probablemente el primer científico que investigo las luces que aparecían (o se reportaban) durante los terremotos, fue el sacerdote italiano Ignazio Galli. Este sacerdote, nacido en Velletri en 1841 y muerto en Roma el 10 de febrero de 1920, fue, durante 45 años, profesor de ciencias naturales de la preparatoria de Velletri. En esa escuela, en 1883, instaló un observatorio meteorológico en el palacio comunitario.

Alentado por Arcanuelo Secchi, se interesó en los fenómenos de la electricidad atmosférica y recolectó cientos de reportes de toda la geografía italiana. Su mayor interés se enfocó en la sismología, geofísica, meteorología y óptica atmosférica. Fue el primer investigador en Italia en interesarse en las centellas. También incursionó en el campo de la botánica e incluso en el de la música.

En el campo sismológico concentró su atención en el estudio, diseño y construcción de nuevos instrumentos sísmicos, por lo que fue premiado con la medalla de oro de la Esposizione Nazionale di Torino, en 1884.

El hecho de ser sacerdote le permitió acceder a los archivos eclesiásticos, de donde extrajo testimonios de varios misioneros, diseminados en todo el mundo, sobre los fenómenos luminosos que ocurrían durante los terremotos. A Ignazio Galli se le debe el primer catálogo que relaciona los fenómenos luminosos con los terremotos.

La primera exposición de sus investigaciones la hizo en el Congresso dei Naturalista Italiani de Milan, en 1907. Su obra cumbre sobre el fenómeno de las luces de los terremotos se publicó en 1910 con el título Raccolta e classificazione dei fenomeni luminosi osservati nei terremoto.

En el seno de la comunidad científica italiana se desató una disputa en torno a si los fenómenos reportados por Galli eran reales y merecían ser estudiados o eran cuentos sin fundamento. El profesor Agamennone G., tomó partido por Galli, pero atribuyó las luces a causas múltiples: fuegos en lontananza causados por incendios forestales, relámpagos, lámparas, daños en las líneas eléctricas y telegráficas, fenómenos inexistentes debido al estado de shock de los testigos que sufrieron los terremotos. Agamennone relata el caso sucedido en el terremoto de Bisignano el 3 de diciembre de 1887. Después del evento se vio una columna luminosa, pero después de estudiar el caso encontró que sólo había un testigo, por lo que se dudó de su testimonio. Sin embargo, uno de los casos mejor documentados por Galli fue el del sismo del 8 de septiembre de 1905, en el que se contó con varios testigos. Agamennone visitó el sitio, pero las noticias fueron totalmente insuficientes y discordantes, por lo que la objetividad del fenómeno se puso en duda.

El profesor Luigi Bombicci, en su artículo, en donde comprende y amplía el contenido del libro del profesor Bianconi (Storia naturale dei terreni ardenti, dei vulcani fangosi, delle sorgenti infiammabili, dei pozzi idropirici, e di altri fenomeni geologici operati dal gas idrogene e dell»™origine di esso gas), estudió los casos del territorio emiliano romagnolo y sus zonas limítrofes y reporta casos ocurridos en ausencia de terremotos. Los fenómenos iban de las explosiones de gas (grisú) en las minas de Bisano y luego en el valle del Idice, a las emanaciones gaseosas que produjeron una flama de tres metros en el valle del Reno, a la centella vista en abril de 1879 en Grecia (Lizzano en Belvedere), los fuegos de Pietramala y de Abrigazo producidos por la combustión de gases del subsuelo.

En la obra de Galli se informa de 148 casos ocurridos en todo el mundo (principalmente en Italia y Europa) distribuidos desde el año 89 a.C. hasta 1910 de la siguiente forma:

9 casos hasta el siglo X

4 de los siglos X al XV

4 en el siglo XVI

15 en el siglo XVII

37 en el siglo XVIII

74 en el siglo XIX

5 en el siglo XX

Galli dividió sus luces en cuatro categorías:

a) Luces y resplandores que desaparecen instantáneamente. Son luces difusas de corta duración que iluminan repentinamente el cielo, sin dar posibilidad de determinar su punto de origen. Sus colores van del blanco al rojo, pasando por el rosa. Conforman el 80% de la muestra de Galli.

b) Luces difusas y nubes luminiscentes que persistían durante algún tiempo. La luminiscencia de las nubes se ha intentado explicar como debida a la difusión/refracción de la luz solar de las partículas de polvo y vapor producidos durante el terremoto. En dos casos ocurridos en Filipinas (el 4 de marzo de 1862 y el 18 de junio de 1878), el padre Saderra Maso reportó la presencia de nubes con una coloración rosa, durante los terremotos.

c) Flamas y nieblas luminiscentes. Luces observadas casi a nivel del suelo que, incluso, penetran en las habitaciones en el momento de los sismos. Probablemente se deban a la combustión de gases liberados durante el terremoto. Se han reportado olores de compuestos bituminosos (petróleo), anhídrido sulfuroso y otros.

d) Formas estructurales con capacidad de movimiento y con tiempos de vida apreciables (globos, columnas, trabes y trompetas luminosas). Estos objetos se pueden mover muy lentamente o a velocidades increíbles en forma rectilínea o un zigzag.

Galli creía que los reportes de columna y de trabes luminosas eran el mismo fenómeno reportado por observadores en posiciones diferentes.

En algunos de estos reportes se habló de sonidos como los producidos por el viento. Esto le sugirió a Galli la idea de que el fenómeno era debido al gas que, en condiciones de calma, producía las columnas y, en condiciones de torbellino, formaba las trompetas. Pero esta explicación no se puede aplicar, por ejemplo, al caso del terremoto de Palermo en 1726, en el que las columnas se vieron sobre la superficie del agua por un tiempo considerable, y luego desaparecieron precipitándose en ella.

La noche del 20 al 21 de julio de 1399, en concomitancia con el temblor, apareció en el cielo una gran trabe luminosa que provocó gran inquietud en la población de Bologna. De mayor envergadura fue el fenómeno observado el 26 de julio de 1805 en el terremoto que convulsionó Campania y el Molise; similar a una trabe, fue vista elevarse en la zona de Bojano, sobrevolar todo el territorio de Isernia, en donde se precipito contra un muro de refuerzo produciendo un hueco de 16 por 8 palmos (4 por 2 metros). El día siguiente, en la zona de San Giorgio (Benevento) se observó en el cielo una trabe muy luminosa, de unos 25 metros de largo por 0.25 de diámetro, que viajaba a gran velocidad y que se disolvió en colores cambiantes. El 22 de marzo de 1821, en el momento mismo del sismo que azotó Umbria, se vio una columna de fuego sobre Cannara, luego se observó otra (¿o la misma?) sobrevolar la ciudad de Rieti, en el lago Cantalice. En Calabria, la noche del 24 al 25 de abril de 1836, muchos animales mostraron signos de inquietud y el mar se puso, repentinamente, agitado y tempestuoso; en la localidad de Calopezzati apareció una trabe en el momento de la sacudida.

Los globos luminosos se han visto surgir de la tierra, del mar y del mismo cielo. Se mueven en línea recta o zigzagueando.

El 16 de enero de 1780 uno de los miembros de la academia de Bologna vio salir del suelo un globo blanco de unos 1.20 m de diámetro, el cual voló al ras del suelo de su habitación y al alejarse emitió un fuerte silbido. No menos espectacular fue lo que ocurrió cerca de San Severino en donde un enorme globo de fuego pasó por sobre un olmo y desecó la mayor parte de las hojas para luego dirigirse a un establo que era usado como bodega de lino y heno incendiándolo por completo y dañado otras construcciones en la vecindad. En el mismo caso, la campana de la única iglesia del castillo Cessapalombo fue golpeada por un globo luminoso que dañó la estructura del muro y produjo un hueco circular en la cúpula. No tuvo mejor suerte la torre del campanario de la Collegiata, cerca de San Ginesio, en donde un globo luminoso elevó una pesada estructura metálica. Se dice que encima de la torre había una estructura de hierro compuesta de 4 columnas pegadas en arco en cuyo centro estaba una pelota de cobre y una cruz con una banderola de unos 3 metros de altura. La estructura entera pesaba unos 4 «quintali» y estaba empotrada en los muros hasta una profundidad de 1.5 metros. Al momento de la sacudida, del campanario cayeron varias partes de la torre, calcinadas, al pie de la misma; pero la estructura metálica cayó 6 metros más allá, hacia el centro de la plaza. Los testigos observaron un globo que acompañó la estructura hasta el suelo, pero que no llegó a tocar el suelo.

Helmuth Tributsch

Publius Cornelius Tacitus (55 a 120 d.C.)

El sismólogo y sacerdote italiano Ignazio Galli.

El doctor Stephen Hales.

El naturalista De Montessus De Ballore.

Grabado en madera del terremoto de Lisboa, ocurrido el día de todos los santos de 1755. En varios episodios sísmicos se ha podido observar luces y destellos en el cielo.

Emmanuel Kant en un grabado del Siglo XVIII.

Robert Boyle (1627-1691) fue el primer químico que rompió con la tradición alquimista.

Un timbre conmemorativo con la imagen de uno de los mejores físicos que ha dado el Japón, Torahiko Terada.

Reportes de luces de los terremotos, como esta, fue lo que estudió el padre Galli.

Entre 1965 y 1967 se dieron una serie de terremotos en la región japonesa de Matsushiro. En esa época se logró tomar varias fotografías de diversas luces sísmicas y fenómenos asociados. Entre ellas ésta de la misteriosa neblina llamada «Chiki».

Escena de la devastación en Tangshan, China del 28 de julio de 1976 (3:45 de la madrugada). En 23 segundos murieron entre 750,000 y un millón de personas, convirtiéndolo en el terremoto más mortífero de los últimos siglos.

Continuará…

Vea también los siguientes enlaces
https://marcianitosverdes.haaan.com/2006/05/las-luces-de-los-terremotos-primera-parte/
https://marcianitosverdes.haaan.com/2006/05/las-luces-de-los-terremotos-y-2/
https://marcianitosverdes.haaan.com/2006/05/las-luces-de-los-terremotos-y-3/
https://marcianitosverdes.haaan.com/2006/05/las-luces-de-los-terremotos-y-4/
https://marcianitosverdes.haaan.com/2006/06/las-luces-de-los-terremotos-final/
https://marcianitosverdes.haaan.com/2007/05/luces-de-los-terremotos/
https://marcianitosverdes.haaan.com/2007/08/luces-de-los-terremotos-en-per/
https://marcianitosverdes.haaan.com/2007/08/el-terremoto-de-per-y-las-luces-ssmicas/
https://marcianitosverdes.haaan.com/2007/08/otro-video-de-las-luces-de-los-terremotos-en-per/
https://marcianitosverdes.haaan.com/2007/08/transformadores-o-luces-de-los-terremotos/
https://marcianitosverdes.haaan.com/2007/08/luces-rojas-en-el-terremoto-de-per/
https://marcianitosverdes.haaan.com/2007/08/luces-elctricas-en-el-terremoto-de-per/

DE ESPECTROS Y GLORIAS

LA ESFERA LUMINOSA CON HUMANOIDES DE ANDORRA

El 13 de agosto de 1994, a las 17:15, dos jóvenes del principado de Andorra. Filmaron una extraña esfera luminosa con una figura aparentemente humanoide en su interior, entre las nubes que cubrían el Monte Pedrús.

Según Bruno Cardeñosa, la policía obligó a los jóvenes a firmar un documento en el que se les instaba a olvidarse del asunto. En ese documento, una confesión, aclaraban que todo era un montaje.

Lo que vemos en las fotos es un fenómeno natural conocido como Espectro del Brocken, Gloria o Heiligenschein, debido a la difracción de la luz sobre gotitas de agua (rocío, nubes, neblina, etcétera). Se puede observar desde las altas montañas, mirando hacia abajo, sobre el banco de nubes o la niebla, cuando el Sol se encuentra detrás del observador. Una forma más simple es colocarse de espalda al Sol, un día por la mañana luego de la caída del rocío. El observador podría observar que sobre su cabeza (e incluso sobre todo su cuerpo) se forma una especie de aureola, como el aura de los santos.

Así pues, la policía no tenía que obligar a nadie a retractarse u ocultar un fenómeno OVNI. Si Cardeñosa lo cree así, es simplemente porque es un ignorante.

El contactado peruano Sixto Paz mostraba en sus conferencias una foto similar. Desconozco si se refería a este caso o era otro distinto. Cualquiera que sea la verdad este señor también es un ignorante.

BIBLIOGRAFÍA

Cardeñosa Bruno, El retorno de los OVNIs, Año Cero, enero de 1996, páginas 80-85.

Rosales Albert, 1994 humanoid report, artículo en Internet, http://www.ufoinfo.com/news/humanoid1994.shtml

Ruiz Noguez Luis, Análisis discriminante para una población de fenómenos aéreos anómalos, tesis de maestría, Instituto Investigaciones en Matemáticas Aplicadas a Sistemas, UNAM, México, sin publicar.

Luego de publicar esta pequeña nota en la desaparecida revista electrónica Perspectivas, Manuel Borraz Aymerich, una de las mentes más brillantez que se ha atrevido a enredarse en el mundo de los ovnis, nos envió la siguiente nota que complementa de manera perfecta esta historia.

«FANTASMOGENESIS» UFOLOGICA

‘El retorno de los OVNIs’ era el expresivo título de un artículo que Bruno Cardeñosa publicó en la revista Año Cero, nº 65 (diciembre 1995), pp. 80-85. El artículo reunía numerosos casos, en su mayoría despachados en unas pocas líneas, de manera que lo importante parecía ser el hecho de que hicieran bulto, aunque resultara un batiburrillo. En esta amalgama indigerible podíamos encontrar hasta una foto de un espléndido cúmulo lenticular con el pie: «foto de un «OVNI-nube» fotografiado en abril de 1994 en Alicante».

En artículos de este tipo, junto a referencias a avistamientos reales -aunque muy probablemente explicables- e imaginarios -los inevitables fraudes-, aparecen los fantasmas. Verdades a medias, cosas que no se dicen y despropósitos. Hablamos de «fantasmogénesis»: la génesis del esperpento. Y como veremos, nada mejor que un espectro para ponerlo en evidencia.

Cuando el autor repasaba en el artículo en cuestión los casos ocurridos en el verano de 1994 comentaba lo siguiente:

«Pero si hay un caso de esas fechas que nos ha producido asombro, es el protagonizado por dos jóvenes del Principado de Andorra, que el 13 de agosto de 1994 filmaron, a las 17:15 horas, una extraña esfera luminosa con una figura aparentemente humanoide en su interior, entre las nubes que cubrían el Monte Pedrús. Todo hubiera quedado ahí -y no es poco- de no ser por la extraña actitud de la Policía de Andorra, que tras un interrogatorio de 24 horas sin la presencia de abogados, «instó» a los jóvenes a olvidarse del asunto firmando un documento que no era sino una «confesión» en la que aseguraban que todo era un montaje.»

Lo curioso del caso es que, un par de semanas después del suceso, la agencia Europa Press ya había difundido un despacho que decía lo siguiente:

«Dos jóvenes simulan una aparición de la Virgen.

«Dos jóvenes españoles fueron retenidos durante 24 horas por la policía andorrana después de descubrirse que la presunta aparición de la Virgen María que rodaron con su cámara de vídeo el pasado 15 de agosto en una montaña de Andorra no era más que un efecto óptico conocido como espectro de Brocken. Para que el espectro de Brocken se produzca deben coincidir la niebla, una temperatura baja y que el observador tenga el sol a la espalda, con lo cual su propia sombra se reproduce agigantada en el horizonte. Los jóvenes exhibieron la cinta ante una redactora del «Diari d’Andorra» para gastar una broma y sin ánimo de lucro.»

La Vanguardia«, 1 septiembre 1994)

A Cardeñosa, el autor del artículo publicado en «Año Cero» más de un año después, podemos perdonarle que no mencionara el contexto «mariano» del caso. Pero lo que no podemos perdonarle es que se olvidara de la explicación que terminó dándose a las imágenes filmadas. El artículo reproducía dos tomas de la filmación. En una de ellas aparecía la «figura aparentemente humanoide» en el interior de la supuesta «esfera luminosa». Sin ningún asomo de duda, era un típico espectro de Brocken. Bastaba con echar un vistazo a un manual de Meteorología.

Manuel Borraz

Joan Plana recibe confirmación oficial:

Por una de esas casualidades, mientras se redactaban los anteriores comentarios, Joan Plana por su parte realizaba gestiones para ampliar la información sobre el suceso. En respuesta a sus consultas, el Director de la Policía del Principado de Andorra, Sr. A. Aleix Camp, confirmaba que el fenómeno luminoso en cuestión «era sin duda un espectro de Brocken» (carta del 7/12/95). La investigación fue realizada por el «Servicio de Investigación» del Servicio de Policía de Andorra.

En una carta fechada el 5/1/96, las mismas fuentes indicaban que por motivos de confidencialidad no podían suministrar copia del dossier e informaban que en el archivo de dicho Servicio de Policía no hay constancia de casos similares.

Particularidades del espectro de Brocken:

Este fenómeno óptico consiste en la sombra del propio espectador sobre una nube o sobre la niebla, rodeada de una especie de aureola. Las sombras del cuerpo y de los brazos convergen hacia la sombra de la cabeza, en torno a la cual se despliega la aureola luminosa. Esta suele mostrar diversos anillos de colores que ponen en evidencia efectos de difracción de la luz similares a los de las coronas que se observan a veces en torno al Sol o la Luna, sólo que en el caso del espectro de Brocken se trata de luz dispersada por las gotas de agua hacia atrás.

Para que pueda observarse el fenómeno se han de dar ciertas condiciones particulares. En primer lugar, debe haber una potente fuente de luz situada detrás del observador. La niebla debe estar formada por gotas muy finas y no obstante ser muy densa. El paisaje de fondo debe ser suficientemente oscuro para facilitar la observación. Una de las ocasiones típicas en las que puede presentarse el fenómeno es cuando la observación se realiza desde la cumbre de una montaña, con el Sol a la espalda del observador proyectando su sombra sobre un banco de nubes a altitud algo inferior. De hecho, el nombre de Brocken hace referencia a cierto pico de Alemania central donde el fenómeno es observado con frecuencia.

POSTDATA: La redacción de la revista «Año Cero» fue puesta al corriente del asunto mediante una carta dirigida a la sección «Escribe el lector». El hecho de que no se llegara a publicar ninguna nota ni aclaración al respecto pone en evidencia -¿hacía falta demostrarlo?- el nulo respeto que muestra por sus lectores una publicación que se jactaba de brindar «la información más fiable a los lectores que buscan la cara oculta de la realidad».

Hasta aquí la nota de Manuel Borraz.

Dimos en la diana. Pisamos el enorme callo de Bruno, su ego superinflado, y de inmediato puso el grito en el cielo. Nos amenazó (eso sí de la manera más amable) con demandarnos si no quitábamos la nota de Perspectivas. Para él, llamarlo ignorante era el peor delito que podía cometer ser humano. Mencionó leyes y tratados internacionales que debían obligarme a retractarme so pena de ser excomulgado, extraditado, colgado y quemado en leña verde. Hasta estuvo a punto de acusarnos con su mamá.

Todo eso se lo hubiera ahorrado simplemente demostrando que no es un ignorante en cuestiones meteorológicas y que sabe lo que es un Espectro de Brocken. Pero de haberlo hecho, entonces también hubiera demostrado que le había mentido a sus lectores a sabiendas. Ante la disyuntiva de mentiroso o ignorante, al parecer Bruno prefiere que le llamen lo primero, pues repela mucho que le digan ignorante.

Para que ya no siga enojado con nosotros (a ver, una sonrisita, ¿quien lo quiere?, cuchi cuchi, gugu dada) le dedicamos este artículo.

DE ESPECTROS Y GLORIAS. DIFRACCIÓN DE LA LUZ

Dedicado a Bruno Cardeñosa, como una contribución a su educación.

«La luna tenía anoche un anillo de oro y esta noche no ha asomado su faz».

Henry Wadsworth Longfellow

En su balada «El naufragio del Hesperus», Henry Wadsworth Longfellow (1807 – 1882) pone estas palabras en labios de un marinero que suplica al capitán del barco que regrese a puerto. El capitán desoye la advertencia, «riéndose de ella socarronamente», y poco después el Hesperus se va a pique en el arrecife de Norman»™s Woe, donde fue arrojado por una tormenta.

Longfellow tenía más conocimientos de meteorología que de historia, puesto que en realidad, el Hesperus estaba fondeado en el puerto de Boston la noche en que se produjo la tormenta descrita en el poema. Pero el consejo del viejo marino es acertado. En efecto, habían ido llegando unas nubes cada vez más densas que transformaron los finos cirrus y la Corona que rodeaba la Luna en cielo muy encapotado, señales inminentes de tormenta. Pero ¿qué cuernos es esta Corona?

La Corona.

Cuando vemos la Luna a través de un manto de tenues nubes, ésta aparece rodeada de un círculo luminoso. Esto es la Corona, producida por pequeñas gotas de agua o cristales de hielo de la atmósfera.

Las Coronas (Holt o Couronne) suelen aparecer en los cielos estivales nublados. Son anillos de colores que se observan alrededor de la Luna y, más raramente, alrededor del Sol (porque brilla demasiado para poder verla), y los planetas (porque casi no brillan). Por lo regular tienen pocos grados de radio, excepto en casos raros. Sus colores son azul cerca del Sol o la Luna y rojo lejos de los astros. La pureza de los colores indica la presencia de difracción de la luz por gotitas de agua de tamaño uniforme suspendidas en la atmósfera. El diámetro de los anillos es inversamente proporcional al de las gotas.

Cuando este fenómeno hace su aparición vulgarmente se dice que la Luna se ha puesto su piel o que tiene un halo. En realidad no se trata de un halo, sino de una Corona. La distribución de colores en ambos fenómenos es exactamente la opuesta.

Tampoco debe confundirse el término Corona con el de Corona Solar. Este último es el que se usa para designar la aureola luminosa y brillante que se puede observar rodeando el Sol en los eclipses solares.

La Corona es mucho más pequeña que el Halo de 22°. Tan sólo cubre pocos diámetros lunares.

La baja pureza de sus colores se debe principalmente a dos factores: el proceso de difracción no concentra los colores en una región reducida, y al amplio rango en los tamaños de las gotas. Cuando la luz pasa a través de pequeñas aberturas o gotas de agua produce círculos luminosos muy bien definidos. El tamaño de los círculos es inversamente proporcional al tamaño de las gotas y depende también de la longitud de onda de la luz (el rojo tiene una mayor longitud de onda que el azul). El rojo produce anillos más grandes que el azul. Con gotas pequeñas se obtienen grandes anillos. Como los tamaños de las gotas se distribuyen en un amplio rango, se pueden ver varios anillos concéntricos. Los anillos de difracción producidos por un gran número n de gotas son los mismos que los producidos por una sola, pero n veces más brillante.

Ya que las dimensiones de las coronas dependen de la dimensión de las gotas de agua y de los cristales de hielo, se ha calculado que el radio de estos esta entre 0.001 y 0.5 milímetros. Las gotas que producen la niebla son de 0.005 milímetros.

Cuando las nubes tienen una temperatura cercana a 0° C, las Coronas son debidas a las gotitas, pero cuando la temperatura es inferior, se forman coronas más brillantes que son producidas por gotitas de agua subenfriada o cristales de hielo.

Kamtz, que verificó un gran número de mediciones de los tamaños de las gotas, encontró que el diámetro de éstas varía con la estación y que es más pequeño en verano que en invierno. Las Coronas más hermosas, de gran diámetro y brillantes se observan en Cirrocúmulos y en Cirrostratus. Por lo general, halos y coronas no aparecen juntos en el cielo, y desde luego nunca en una misma nube, debido a la acusada diferencia en la manera de formarse. Nunca se ha comprobado la presencia simultánea de una Corona y de un Halo. Cuando se tienen descripciones detalladas de una corona que ha sido observada simultáneamente con un halo, se trata de una simple aureola, es decir, un anillo rojo de diámetro pequeño (alrededor de 2°), que corresponde, por consiguiente, a partículas que tienen dimensiones bastante grandes: alrededor de 0.05 milímetros. Cristales más pequeños darían una Corona sin halo, y cristales más grandes, un halo sin Corona.

Es comprensible que la gente atribuya carácter profético a la aparición de luces en el cielo. Una de las profecías más frecuentes se basa en el hecho de que las nubes productoras de coronas suelen acarrear precipitaciones; de ahí los muchos refranes que anuncian lluvia cuando «tiene cerco la Luna». Los indios de América del Norte dicen también que «cuando el Sol está en casa (en su Corona), lloverá pronto».

Pero algunos de estos refranes no responden a una observación rigurosa. Así, los que suponen más cercana la lluvia cuanto mayor es el anillo interpretan equivocadamente el fenómeno, pues la corona disminuye al aproximarse la lluvia, debido a que las gotas de agua de la nube se hacen mayores y cambian sus propiedades ópticas.

La Aureola (Aureole, Auréolo u Hot).

Es la porción interna de la corona y está contigua al Sol o a la Luna. Consiste en círculos brillantes en los cuales los colores van de un azul blanquecino al amarillo o café rojizo. La dimensión de la Aureola «“hasta el extremo rojo- varía considerablemente y algunas veces llega a 5°. Bajo condiciones favorables, la Aureola se rodea de anillos coloridos (más de tres) separados por espacios negros. Los colores de estos anillos «“que son más débiles-, ocurren en el mismo orden que en la Aureola (el rojo siempre está en el exterior).

Este fenómeno atmosférico no debe confundirse con el resplandor, disco o círculo luminoso que los pintores colocan sobre la cabeza de los santos.

La Aureola ocurre cuando la luz se propaga a través de un medio que contiene muchos tamaños de partículas o gotas que son más grandes que la longitud de onda de la luz. Debido a que la longitud de onda de la luz visible es de 0.00005 centímetros (0.5 micrones), las partículas mayores a 0.0001 centímetros pueden producir aureolas.

Una densa neblina también produce una aureola solar fácilmente observable y que disminuye en brillo al incrementarse el ángulo solar.

Anillos del Obispo.

La difracción puede darse no sólo por la presencia de gotas de agua o cristales de hielo, sino por la existencia de cualquier clase de partículas de diámetro uniforme, tal como las partículas que los volcanes lanzan a la atmósfera.

La primera descripción que se hizo de este fenómeno fue en 1883, después de la erupción del volcán Krakatoa. El primer informe se publicó en la Japan Gazette y describe un débil halo alrededor del Sol, el 30 de agosto de 1883 (3 días después de la erupción). El 5 de septiembre, el Reverendo Sereno Edwards S. (1827 – 1896) Obispo de Honolulu hizo su descripción más detallada de estas coronas café rojizo. Como resultado de sus metódicas observaciones, este fenómeno se conoce como Anillos del Obispo.

La Royal Society of London formó una comisión para el estudio de los efectos mundiales de la erupción del volcán Krakatoa. Su reporte The Eruption of Krakatoa and Subsequent Phenomena, es un libro de 500 páginas. Una sección de este reporte proporciona los detalles de una gran Corona vista alrededor del Sol y la Luna debida a la nube de polvo volcánico. El radio angular de este anillo fue de aproximadamente 28°, lo que indica la presencia de partículas con radios de aproximadamente 0.00182 milímetros.

Con el tiempo estos anillos se han vuelto más comunes, como resultado de la polución atmosférica de la que el hombre es el responsable. Por lo regular son anillos de más de 10° de amplitud, de color rojo-café y colocados a una distancia de 20° a 30° del Sol.

Espectro del Brocken, Arco del Brocken o Espectro de la Montaña.

El fenómeno más curioso de esta familia es la Corona Antisolar que consiste en un conjunto de anillos de luz colorida alrededor de la sombra de la cabeza del observador que se encuentre sobre una nube o un banco de niebla. El observador, de espaldas al Sol, ve la sombra de su cabeza, sobre el banco de niebla, rodeada de anillos coloridos.

Este es un fenómeno común en el pico más alto (el Brocken) de las montañas de Harz en la Alemania central, donde cuando el Sol está bajo, se ven las sombras enormemente ampliadas sobre las superficies superiores de las nubes. Debido a su posición excéntrica, el monte Brocken presenta dos características que lo hacen el punto en donde se tienen las mejores oportunidades de observar el fenómeno: durante más de 300 días se encuentra cubierto de bruma, y esta niebla es muy gruesa (la visibilidad es de sólo unos cuantos metros).

Un Espectro del Brocken ocurre cuando el observador ve su sombra en una pared de niebla. La pared de la niebla se puede comparar con una pantalla de cine, donde la sombra se proyecta y se amplía varias veces. Pero al contrario de la pantalla, la niebla no tiene ninguna superficie lisa (verdadera), de modo que produce formas tridimensionales que se mueven de una manera aterradora cuando se agita la niebla, aunque el observador no se este moviendo.

El efecto se debe a la dispersión primaria de la luz incidente por gotitas de un banco de niebla. Los anillos se forman alrededor del punto antisolar.

La Gloria, Anticorona o Arco del Piloto.

A veces se forma un fenómeno óptico colorido de anillos alrededor de la «cabeza» del Espectro del Brocken. Es la llamada Gloria. Esta Gloria es causada por la dispersión hacia atrás y la difracción de los rayos del Sol por las gotitas muy pequeñas de la niebla. Los rayos de la luz se dispersan por las gotitas redondas pequeñas en un patrón de círculos concéntricos.

Cuanto más grande es la distancia entre el observador y la niebla, la Gloria es más grande y más colorida, pero el espectro del Brocken se hace más pequeño y más débil. Pero por otra parte, a menudo se hace visible otro fenómeno: El Arco de Niebla.

A la Gloria también se le conoce como el Saludo del Piloto, el Arco del Piloto o Anticorona. Es el mismo fenómeno que el Espectro del Brocken pero visto desde los aviones o globos que vuelan sobre una capa de nubes. La sombra de la aeronave suele estar rodeada por uno o varios anillos irisados.

Es causada por la dispersión de la luz por gotas de agua (tal como en el arco iris). Consiste en anillos concéntricos de color, donde el rojo es el más externo y el violeta el interno. En el centro hay una región brillante en dirección opuesta a la que se encuentra el Sol (Punto Antisolar). A diferencia del arco iris, cuyo anillo rojo esta invariablemente a un ángulo de 42° de la dirección de la sombra producida por el observador, la Gloria tiene anillos cuyo diámetro angular varía inversamente con el diámetro de las gotas que la producen. Los anillos primarios están acompañados de 4 conjuntos de anillos similares de mayor diámetro angular. El anillo más interno tiene un diámetro de dos o tres grados. El tamaño angular de la Gloria no depende de la distancia entre el avión y la nube, pero la sombra del avión sí depende de esos parámetros.

Para poder ver la Gloria uno debe colocarse mirando la nube de gotas uniformes de tal forma que nuestra sombra se proyecte sobre la nube. Veremos un halo alrededor de la sombra de nuestra cabeza.

El espectáculo es difícil de apreciar para observadores en el suelo porque requiere una configuración inusual del Sol, las nubes y el observador. Sin embargo es fácil de observarla desde el aire, particularmente para aquellos que saben en donde mirar.

También se les conoce como Anillos de Ulloa. El capitán y explorador español Antonio de Ulloa (1716 – 1795) hizo el primer informe científico de este fenómeno durante la expedición francesa al Perú, que en 1735 cruzó los Andes. Tanto él como el erudito francés Pierre Bouguer (1698 – 1758) hicieron dibujos describiendo el fenómeno.

El lugar del término «Anillo de Ulloa», que internacionalmente fue utilizado hasta el final del siglo XVIII, fue reemplazado por el de Espectro de Brocken que Goethe utilizó en su «Teoría de los colores» en donde resumió los estudios ópticos y meteorológicos que hizo en el monte Brocken. Espectro del Brocken es el nombre que actualmente se utiliza en la bibliografía meteorológica en el mundo entero.

Los aeronautas del siglo XIX veían la Gloria alrededor de la sombra de su globo, tal como lo relata Gastón Tissandier (1843 – 1899) en su Observations Metéorologiques en Ballon.

En 1895 Charles Thomson Rees Wilson (1869 «“ 1959) inventó su famosa cámara de niebla con el objeto de poder apreciar este fenómeno en el laboratorio. Nunca pensó que su aparato se usaría posteriormente para detectar el trayecto de las partículas subatómicas.

Se han hecho varios intentos para explicar las Glorias aplicando la Teoría de Mie. En 1908 el físico alemán Gustav Mie (1868 «“ 1957) mostró que se puede calcular, con la precisión que uno desee, la intensidad de una onda electromagnética dispersada por una esfera, incluso para ángulos en la dirección posterior. De acuerdo con esto, parte de la luz se dispersa en la dirección opuesta al rayo incidente y llega al eje del observador desde las partículas de niebla.

La Heiligenschein (Luz Santa).

En ocasiones se ven anillos similares a los de la Gloria rodeando la sombra proyectada sobre el pasto o hierba húmeda. Este anillo no posee color: es un halo blanco.

El efecto es similar al que ocurre cuando alumbramos los ojos de un perro, un gato o un conejo a una distancia de unos 10 metros. Los ojos de estos animales parecerán como pequeñas lámparas encendidas. Para que ocurra el efecto nuestra fuente de luz deberá estar lo más cercana a nuestra cabeza. Si la alejamos a más de un metro, desaparecerá el destello en los ojos de estos animales.

La dispersión hacia atrás en los ojos de los animales se debe a que tienen una capa reflectora tras su retina. La luz que entra a los ojos de los animales desde la dirección del observador es conducida a un foco en la retina del animal; desde ahí, parte de esta luz se refleja en los ojos del animal y otra parte se refracta hacia atrás en la dirección por la que venía. El resultado es que el ojo del animal parece estar iluminado desde dentro.

Ocurre otro tanto con los ojos de los niños cuando se les fotografía: sus ojos aparecen extrañamente rojos. David L. MacAdam, editor del Journal of the Optical Society of America comenta:


«Cualquier fotógrafo que haya tomado muchos acercamientos con cámaras que poseen un flash integrado y cercano a las lentes, se ha asombrado cuando algunas de sus fotografías se arruinan debido a las brillantes manchas rojas que coinciden con las pupilas de algunos de sus modelos. Una porción considerable de las rubias de ojos claros tienen tan fuerte reflexión en el fondo de sus ojos como para producir Heiligenschein».

Esto se debe a que el flash se encuentra muy cerca de las lentes de la cámara. El efecto desaparece si se alejan entre sí estos dispositivos fotográficos.

Algunas «calaveras» de automóvil hacen uso de este principio. Se trata de una superficie pintada de blanco y recubierta de cuentas de vidrio o plástico que actúa como los ojos de un gato enviando la luz en la misma dirección en que llegó. No se trata propiamente de una reflexión de luz como en los espejos. En estos la luz se refleja en todas direcciones dependiendo de la orientación del mismo. En el fenómeno que discutimos la luz se regresa sólo en una dirección: la opuesta a la de la entrada.

Se pueden ver efectos del tipo del Heiligenschein contra un fondo de hierba con rocío. Cuando uno mira la hierba u el pasto en la misma dirección de la iluminación (con el Sol en la espalda) la sombra de nuestra cabeza aparecerá rodeada por un halo brillante. Así como los ojos de los animales, las gotas de agua, que son más o menos esféricas, sirven como lentes convergentes en miniatura que colectan la luz y la enfocan sobre tallos de la hierba. Sin embargo, el agua tiene un índice de refracción menor que el vidrio o el de los ojos de los felinos, por lo que desvía poco los rayos de luz y sólo debido a la presencia de las hojas de hierba que las sostienen, logra regresar a los rayos de luz por su dirección original.

Nubes Iridiscentes.

Aunque les dedicamos otro artículo, no está de más hacer aquí algunas observaciones.

Algunas veces se desarrollan numerosos bordes iridiscentes de forma irregular cuando se evaporan los Cirrostratus y los Cirrocúmulos. Estos bordes son de color rojo o verde, colocados a 20° del Sol cuando éste se encuentra a una altura superior a los 30°. Simpson indica que estos pueden ser fragmentos de la Corona. Otras nubes (Fractocúmulos, Altocúmulos y Nubes Lenticulares), además de las coloraciones roja y verde, adquieren un tinte madre perla.

Cuando escribimos este capítulo para nuestra tesis de maestría nos preguntamos «Es claro que las Glorias y la Heiligenschein (y no sólo por su nombre) tienen una connotación religiosa, ¿la tendrán también ufológica?» El homenajeado en este artículo ya nos ha dado la respuesta.

REFERENCIAS

Beidleman Richard, Función de gala en el espacio, en Maravillas y Misterios del mundo que nos rodea, Selecciones del Reader»™s Digest, México, 1973.

Bryant H. C., & Cox A. J., Mie Theory and the Glory, Journal of the Optical Society of America, Vol. 56, Pag. 1529, 1966.

Bryant H. C., & Jarmie N., The Glory, Scientific American, Vol. 231, Pag. 60, 1974.

Catchpole A. J. W., & Moodie D. W., Multiple Reflections in Arctic Regions, Weather, Vol. 26, Pag. 157, 1971.

Dietze Gerhard, Einführung in die Optik der Atmosphaere, Akademische Verlagsgesellschaft, Leipzig, 1957.

Douglas Archibald, The Large Corona Round the Sun and Moon in 1883-4-5, Generally Know as «Bishop Ring», Pt. IV, Sec. I(E) de The Eruption of Krakatoa and Subsequent Phenomena, Trübner, London, 1888.

Greenler G. Robert, Rainbows, Halos, and Glories, Cambridge University Press, Cambridge, 1980.

Humphreys William Jackson, Physics of the Air, Dover, New York, 1964.

Menzel H. Donald, & Taves H. Ernest, The UFO Enigma. The Definitive Explanation of the UFO Phenomenon, Doubleday & Company, Inc., New York, 1977.

Minnaert Marcel, The Nature of Light and Colour in the Open Air, Dover, New York, 1954.

Nussenzveig H. M., Complex Angular Momentum Theory of the Rainbow and the Glory, Journal of the Optical Society of America, Vol. 69, Pag. 1068, 1979.

Rubin D. Luis, Aprende a pronosticar el tiempo, en El maravilloso mundo de la naturaleza. Sus maravillas y misterios, Selecciones del Reader»™s Digest, México, 1969.

Tricker R. A. R., Introduction to Meteorological Optics, American Elsevier, New York, 1970.

Tverskoi, P. N., Physics of the Atmosphere. A Course in Meteorology, NASA Technical Translation, NASA TT F-288. NTIS, Springfield, Va., 1965.

En la primera fotografía de la serie de Andorra se puede observar el reflejo solar sobre la base de la montaña.

La esfera con humanoide en su interior no es nada más que un efecto de dispersión de la luz sobre las gotas de niebla por debajo de los alpinistas. Lo que se ve al fondo es el propio fotógrafo rodeado de un resplandor.

Henry Wadsworth Longfellow.

Seis fotografías de Coronas.

Aureola.

Dos fotos de Anillos del Obispo.

Dos instantáneas de Espectro de Brocken.

La Gloria en el Espectro de Brocken.

Ilustración del Siglo XIX que muestra el Espectro de Brocken en las montañas Harz.

Once fotografías de Glorias.

Cuatro fotos de El Arco del piloto.

Antonio de Ulloa.

Pierre Bouguer.

Gastón Tissandier.

Dibujo de la expedición de Tissandier.

Gastón Tissandier y su globo.

Charles Thomson Rees Wilson.

Gustav Mie.

Arco de Niebla.

Gloria y Arco de Niebla.

Arco de Niebla y Heiligenschein.

Dos fotos de Arcos de niebla.

Heiligenschein.

Dos ftografías de Luz santa.

Heiligenschein sobre una telaraña

Dos fotos finales de Espectro de Brocken.

Fotografían un puerco volador

El famoso investigador de platos voladores Jaime Marssián, acogiéndose al Acta de Libertad de Información, obtuvo una fotografía secreta captada desde un avión de la Fuerza Aérea de los Estados Unidos, que muestra indudablemente que los marcianitos verdes y los cochinitos rosas están interesados en los proyectos secretos americanos. Marssián aseguró, al ser entrevistado, que el cochinito movía las patas y batía sus alitas a gran velocidad. Durante todo el avistamiento se mantuvo a la misma distancia del avión. Fuentes extraoficiales aseguraron que en realidad no se trata de un CVNI (Cochinito Volador No Identificado), sino del puerquito que construyó su casa de paja. Y si en la foto parece estar volando detrás del avión experimental americano, simplemente es porque el lobo sopló tan fuerte que no sólo destruyó la casa sino mandó a volar al cochinito. Pero el físico paranuclear extradimensional con doctorado en materia oscura por la Universidad de Disneyworld, el doctor y Master en energía Chi, Garrido Friedman, (se nos olvidaba decir que también es asesor de la NASA), dice que esa versión es sólo una maniobra de distracción por parte de los escépticos. Asegura que la foto muestra un auténtico puerco volador y que su aparición forma parte de la oleada de animales voladores vistos en diversas partes del mundo. Ya hay videos de otro CVNI, esta vez un Caballo Volador No Identificado, filmado en Italia, y se espera la pronta aparición de vacas y elefantes voladores. Se recomienda salir a la calle con una sombrilla reforzada.